catiR
commited on
Commit
·
366ecce
1
Parent(s):
86daaba
force align tts, add voices
Browse files- app.py +2 -4
- requirements.txt +1 -0
- scripts/clusterprosody.py +88 -331
- scripts/reaper2pass.py +10 -14
- scripts/runSQ.py +128 -128
- scripts/tapi.py +26 -32
app.py
CHANGED
@@ -54,10 +54,8 @@ with bl:
|
|
54 |
|
55 |
#temp_sentences = ['Litlaus græn hugmynd?','Var það ekki nóg?', 'Ef svo er hvað heita þau þá?','Eru maríuhænur á Íslandi?']
|
56 |
|
57 |
-
voices = ['Alfur','Dilja']
|
58 |
-
|
59 |
-
# supposedly they also provided for Karl, Dora, but i dont even get their wavs
|
60 |
-
# i get everyone elses wavs tho
|
61 |
|
62 |
#with gr.Row():
|
63 |
#with gr.Column(scale=4):
|
|
|
54 |
|
55 |
#temp_sentences = ['Litlaus græn hugmynd?','Var það ekki nóg?', 'Ef svo er hvað heita þau þá?','Eru maríuhænur á Íslandi?']
|
56 |
|
57 |
+
voices = ['Alfur_v2', 'Dilja_v2', 'Alfur','Dilja', 'Bjartur', 'Rosa', 'Karl', 'Dora']
|
58 |
+
|
|
|
|
|
59 |
|
60 |
#with gr.Row():
|
61 |
#with gr.Column(scale=4):
|
requirements.txt
CHANGED
@@ -5,5 +5,6 @@ librosa
|
|
5 |
scipy
|
6 |
dtw-python
|
7 |
scikit-learn_extra
|
|
|
8 |
pydub
|
9 |
|
|
|
5 |
scipy
|
6 |
dtw-python
|
7 |
scikit-learn_extra
|
8 |
+
secrets
|
9 |
pydub
|
10 |
|
scripts/clusterprosody.py
CHANGED
@@ -16,63 +16,40 @@ import os, librosa, json
|
|
16 |
|
17 |
|
18 |
|
19 |
-
|
20 |
def z_score(x, mean, std):
|
21 |
return (x - mean) / std
|
22 |
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# {'013823-0457777': [('hvaða', 0.89, 1.35),
|
28 |
-
# ('sjúkdómar', 1.35, 2.17),
|
29 |
-
# ('geta', 2.17, 2.4),
|
30 |
-
# ('fylgt', 2.4, 2.83),
|
31 |
-
# ('óbeinum', 2.83, 3.29),
|
32 |
-
# ('reykingum', 3.29, 3.9)],
|
33 |
-
# '014226-0508808': [('hvaða', 1.03, 1.45),
|
34 |
-
# ('sjúkdómar', 1.45, 2.28),
|
35 |
-
# ('geta', 2.41, 2.7),
|
36 |
-
# ('fylgt', 2.7, 3.09),
|
37 |
-
# ('óbeinum', 3.09, 3.74),
|
38 |
-
# ('reykingum', 3.74, 4.42)],
|
39 |
-
# '013726-0843679': [('hvaða', 0.87, 1.14),
|
40 |
-
# ('sjúkdómar', 1.14, 1.75),
|
41 |
-
# ('geta', 1.75, 1.96),
|
42 |
-
# ('fylgt', 1.96, 2.27),
|
43 |
-
# ('óbeinum', 2.27, 2.73),
|
44 |
-
# ('reykingum', 2.73, 3.27)] }
|
45 |
-
|
46 |
-
# takes a list of human SPEAKER IDS not the whole meta db
|
47 |
-
def get_word_aligns(rec_ids, norm_sent, aln_dir):
|
48 |
"""
|
49 |
Returns a dictionary of word alignments for a given sentence.
|
50 |
"""
|
51 |
word_aligns = defaultdict(list)
|
|
|
52 |
|
53 |
-
for
|
54 |
-
slist = norm_sent.split(" ")
|
55 |
-
aln_path = os.path.join(aln_dir, f'{rec}.tsv')
|
56 |
with open(aln_path) as f:
|
57 |
lines = f.read().splitlines()
|
58 |
lines = [l.split('\t') for l in lines]
|
59 |
try:
|
60 |
assert len(lines) == len(slist)
|
61 |
-
word_aligns[
|
62 |
except:
|
63 |
print(slist, lines, "<---- something didn't match")
|
64 |
return word_aligns
|
65 |
|
66 |
|
67 |
-
|
68 |
-
|
|
|
69 |
"""
|
70 |
Returns an array of pitch values for a given speech.
|
71 |
Reads from .f0 file of Time, F0, IsVoiced
|
72 |
"""
|
73 |
|
74 |
-
|
75 |
-
with open(f) as f:
|
76 |
lines = f.read().splitlines()
|
77 |
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
|
78 |
pitches = []
|
@@ -98,6 +75,7 @@ def get_pitches(start_time, end_time, id, path):
|
|
98 |
|
99 |
|
100 |
|
|
|
101 |
# jcheng used energy from esps get_f0
|
102 |
# get f0 says (?) :
|
103 |
#The RMS value of each record is computed based on a 30 msec hanning
|
@@ -107,20 +85,20 @@ def get_pitches(start_time, end_time, id, path):
|
|
107 |
# TODO: implement that. ?
|
108 |
# not sure librosa provides hamming window in rms function directly
|
109 |
# TODO handle audio that not originally .wav
|
110 |
-
def get_rmse(start_time, end_time,
|
111 |
"""
|
112 |
Returns an array of RMSE values for a given speech.
|
113 |
"""
|
114 |
|
115 |
-
|
116 |
-
audio, sr = librosa.load(f, sr=16000)
|
117 |
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
|
118 |
-
rmse = librosa.feature.rms(y=segment)
|
119 |
rmse = rmse[0]
|
120 |
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
|
121 |
return rmse#[idx]
|
122 |
|
123 |
|
|
|
124 |
def downsample_rmse2pitch(rmse,pitch_len):
|
125 |
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
|
126 |
return rmse[idx]
|
@@ -142,29 +120,31 @@ def parse_word_indices(start_end_word_index):
|
|
142 |
|
143 |
# take any (1stword, lastword) or (word)
|
144 |
# unit and prepare data for that unit
|
145 |
-
def get_data(norm_sent,
|
146 |
"""
|
147 |
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
|
148 |
"""
|
149 |
|
150 |
s_ix, e_ix = parse_word_indices(start_end_word_index)
|
151 |
-
|
152 |
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
|
153 |
|
154 |
-
|
|
|
|
|
155 |
data = defaultdict(list)
|
156 |
align_data = defaultdict(list)
|
157 |
|
158 |
-
for
|
|
|
159 |
start_time = word_al[s_ix][1]
|
160 |
end_time = word_al[e_ix][2]
|
161 |
|
162 |
seg_aligns = word_al[s_ix:e_ix+1]
|
163 |
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
|
164 |
|
165 |
-
pitches = get_pitches(start_time, end_time,
|
166 |
|
167 |
-
rmses = get_rmse(start_time, end_time,
|
168 |
rmses = downsample_rmse2pitch(rmses,len(pitches))
|
169 |
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
|
170 |
|
@@ -172,13 +152,12 @@ def get_data(norm_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, start_end_wo
|
|
172 |
rmses_cpy = np.array(deepcopy(rmses))
|
173 |
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
|
174 |
#words = "-".join(word_combs)
|
175 |
-
data[f"{words}**{
|
176 |
-
align_data[f"{words}**{
|
177 |
|
178 |
return words, data, align_data
|
179 |
|
180 |
-
|
181 |
-
|
182 |
|
183 |
def dtw_distance(x, y):
|
184 |
"""
|
@@ -190,7 +169,6 @@ def dtw_distance(x, y):
|
|
190 |
|
191 |
|
192 |
|
193 |
-
|
194 |
# recs is a sorted list of rec IDs
|
195 |
# all recs/data contain the same words
|
196 |
# rec1 and rec2 can be the same
|
@@ -206,33 +184,7 @@ def pair_dists(data,words,recs):
|
|
206 |
val2 = data[key2]
|
207 |
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
|
208 |
|
209 |
-
#for key1, value1 in data.items():
|
210 |
-
# d1 = key1.split("**")
|
211 |
-
# words1 = d1[0]
|
212 |
-
# if not words:
|
213 |
-
# words = words1
|
214 |
-
# spk1 = d1[1]
|
215 |
-
# for key2, value2 in data.items():
|
216 |
-
# d2 = key2.split("**")
|
217 |
-
# words2 = d2[0]
|
218 |
-
# spk2 = d2[1]
|
219 |
-
# if all([w0 == w2 for w0, w2 in zip(words.split('_'), words2.split('_'))]):
|
220 |
-
#dtw_dists[words1].append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
|
221 |
-
# dtw_dists.append((f"{spk1}**{spk2}", dtw_distance(value1, value2)))
|
222 |
return dtw_dists
|
223 |
-
# dtw dists is the dict from units to list of tuples
|
224 |
-
# or: now just the list not labelled with the unit.
|
225 |
-
# {'hvaða-sjúkdómar':
|
226 |
-
# [('013823-0457777_013823-0457777', 0.0),
|
227 |
-
# ('013823-0457777_013698-0441666', 0.5999433281203399),
|
228 |
-
# ('013823-0457777_014675-0563760', 0.4695447105594414),
|
229 |
-
# ('014226-0508808_013823-0457777', 0.44080874425223393),
|
230 |
-
# ('014226-0508808_014226-0508808', 0.0),
|
231 |
-
# ('014226-0508808_013726-0843679', 0.5599404672667414),
|
232 |
-
# ('014226-0508808_013681-0442313', 0.6871330752342419)]
|
233 |
-
# }
|
234 |
-
# the 0-distance self-comparisons are present here
|
235 |
-
# along with both copies of symmetric Speaker1**Speaker2, Speaker2**Speaker1
|
236 |
|
237 |
|
238 |
|
@@ -244,46 +196,9 @@ def kmedoids_clustering(X):
|
|
244 |
return y_km, kmedoids
|
245 |
|
246 |
|
247 |
-
def get_tts_data(tdir,voice,start_end_word_index):
|
248 |
-
with open(f'{tdir}{voice}.json') as f:
|
249 |
-
speechmarks = json.load(f)
|
250 |
-
speechmarks = speechmarks['alignments']
|
251 |
-
|
252 |
-
sr=16000
|
253 |
-
tts_audio, _ = librosa.load(f'{tdir}{voice}.wav',sr=sr)
|
254 |
-
|
255 |
-
# TODO
|
256 |
-
# tts operates on punctuated version
|
257 |
-
# so clean this up instead of assuming it will work
|
258 |
-
s_ix, e_ix = parse_word_indices(start_end_word_index)
|
259 |
-
|
260 |
-
# TODO
|
261 |
-
# default speechmarks return word start time only -
|
262 |
-
# this cannot describe pauses #######
|
263 |
-
s_tts = speechmarks[s_ix]["time"]/1000
|
264 |
-
if e_ix+1 < len(speechmarks): #if user doesn't want final word, which has no end time mark,
|
265 |
-
e_tts = speechmarks[e_ix+1]["time"]/1000
|
266 |
-
tts_segment = tts_audio[int(np.floor(s_tts * sr)):int(np.ceil(e_tts * sr))]
|
267 |
-
else:
|
268 |
-
tts_segment = tts_audio[int(np.floor(s_tts * sr)):]
|
269 |
-
e_tts = len(tts_audio) / sr
|
270 |
-
# TODO not ideal as probably silence padding on end file?
|
271 |
-
|
272 |
-
tts_align = [(speechmarks[ix]["value"],speechmarks[ix]["time"]) for ix in range(s_ix,e_ix+1)]
|
273 |
-
tts_align = [(w,s/1000) for w,s in tts_align]
|
274 |
-
tts_align = [(w,round(s-s_tts,3)) for w,s in tts_align]
|
275 |
-
|
276 |
-
tts_f0 = get_pitches(s_tts, e_tts, voice, tdir)
|
277 |
-
tts_rmse = get_rmse(s_tts, e_tts, voice, tdir)
|
278 |
-
tts_rmse = downsample_rmse2pitch(tts_rmse,len(tts_f0))
|
279 |
-
t_pitches_cpy = np.array(deepcopy(tts_f0))
|
280 |
-
t_rmses_cpy = np.array(deepcopy(tts_rmse))
|
281 |
-
tts_data = [[p, r] for p, r in zip(t_pitches_cpy, t_rmses_cpy)]
|
282 |
-
return tts_data, tts_align
|
283 |
-
|
284 |
-
|
285 |
|
286 |
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
|
|
|
287 |
|
288 |
tts_info = []
|
289 |
for label in set([c for r,c in clusters]):
|
@@ -308,18 +223,31 @@ def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voi
|
|
308 |
bad_cluster = tts_info[2][0]
|
309 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
310 |
|
311 |
-
tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
312 |
-
|
313 |
-
|
|
|
|
|
314 |
|
315 |
-
tts_fig_e =
|
316 |
-
fig_mid_e =
|
317 |
-
fig_bad_e =
|
318 |
|
319 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
320 |
|
321 |
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
# since clustering strictly operates on X,
|
325 |
# once reduce a duration metric down to pair-distances,
|
@@ -329,14 +257,16 @@ def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voi
|
|
329 |
# or can it not take that input in multidimensional space
|
330 |
# then the 3 dists can still be averaged to flatten, if appropriately scaled
|
331 |
|
332 |
-
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir,
|
333 |
|
334 |
h_spk_ids = sorted(h_spk_ids)
|
335 |
nsents = len(h_spk_ids)
|
336 |
|
337 |
-
|
|
|
|
|
338 |
|
339 |
-
dtw_dists = pair_dists(
|
340 |
|
341 |
kmedoids_cluster_dists = []
|
342 |
|
@@ -352,13 +282,17 @@ def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts
|
|
352 |
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
|
353 |
|
354 |
|
355 |
-
|
356 |
-
|
|
|
357 |
for v in voices:
|
358 |
-
|
|
|
|
|
|
|
359 |
|
360 |
# match the data with a cluster -----
|
361 |
-
best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups,
|
362 |
|
363 |
# only supports one voice at a time currently
|
364 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
@@ -432,125 +366,39 @@ def get_audio_part(start_time, end_time, id, path):
|
|
432 |
|
433 |
|
434 |
|
435 |
-
|
436 |
-
|
437 |
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
438 |
cc = 0
|
439 |
fig = plt.figure(figsize=(10, 5))
|
440 |
-
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
|
441 |
-
for k,v in speech_data.items():
|
442 |
-
|
443 |
-
spk = k.split('**')[1]
|
444 |
-
|
445 |
-
word_times = seg_aligns[k]
|
446 |
-
|
447 |
-
pitches = [p for p,e in v]
|
448 |
-
# datapoint interval is 0.005 seconds
|
449 |
-
pitch_xvals = [x*0.005 for x in range(len(pitches))]
|
450 |
-
|
451 |
-
# centre around the first word boundary -
|
452 |
-
# if 3+ words, too bad.
|
453 |
-
if len(word_times)>1:
|
454 |
-
realign = np.mean([word_times[0][2],word_times[1][1]])
|
455 |
-
pitch_xvals = [x - realign for x in pitch_xvals]
|
456 |
-
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
457 |
-
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
458 |
-
|
459 |
-
if len(word_times)>2:
|
460 |
-
for i in range(1,len(word_times)-1):
|
461 |
-
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
462 |
-
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
463 |
-
|
464 |
-
plt.scatter(pitch_xvals, pitches, color=colors[cc], label=f"Speaker {spk}")
|
465 |
-
cc += 1
|
466 |
-
if cc >= len(colors):
|
467 |
-
cc=0
|
468 |
-
|
469 |
-
tpitches = [p for p,e in tts_data]
|
470 |
-
t_xvals = [x*0.005 for x in range(len(tpitches))]
|
471 |
|
472 |
-
if
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
#plt.legend()
|
485 |
-
#plt.show()
|
486 |
-
|
487 |
-
|
488 |
-
return fig
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
def plot_pitch_cluster(speech_data,words,seg_aligns,cluster_id):
|
493 |
-
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
494 |
-
cc = 0
|
495 |
-
fig = plt.figure(figsize=(8, 4))
|
496 |
-
plt.title(f"{words} - Pitch - Cluster {cluster_id}")
|
497 |
for k,v in speech_data.items():
|
498 |
|
499 |
spk = k.split('**')[1]
|
500 |
|
501 |
word_times = seg_aligns[k]
|
502 |
|
503 |
-
pitches = [p for p,e in v]
|
504 |
-
# datapoint interval is 0.005 seconds
|
505 |
-
pitch_xvals = [x*0.005 for x in range(len(pitches))]
|
506 |
-
|
507 |
-
# centre around the first word boundary -
|
508 |
-
# if 3+ words, too bad.
|
509 |
-
if len(word_times)>1:
|
510 |
-
realign = np.mean([word_times[0][2],word_times[1][1]])
|
511 |
-
pitch_xvals = [x - realign for x in pitch_xvals]
|
512 |
-
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
513 |
-
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
514 |
-
|
515 |
-
if len(word_times)>2:
|
516 |
-
for i in range(1,len(word_times)-1):
|
517 |
-
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
518 |
-
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
519 |
-
|
520 |
-
plt.scatter(pitch_xvals, pitches, color=colors[cc], label=f"Speaker {spk}")
|
521 |
-
cc += 1
|
522 |
-
if cc >= len(colors):
|
523 |
-
cc=0
|
524 |
-
|
525 |
-
#plt.legend()
|
526 |
-
#plt.show()
|
527 |
-
|
528 |
-
|
529 |
-
return fig
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
def plot_rmse_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, voice):
|
535 |
-
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
536 |
-
cc = 0
|
537 |
-
fig = plt.figure(figsize=(10, 5))
|
538 |
-
plt.title(f"{words} - Energy - Cluster {cluster_id}")
|
539 |
-
for k,v in speech_data.items():
|
540 |
-
|
541 |
-
spk = k.split('**')[1]
|
542 |
-
|
543 |
-
word_times = seg_aligns[k]
|
544 |
|
545 |
-
|
546 |
# datapoint interval is 0.005 seconds
|
547 |
-
|
548 |
|
549 |
# centre around the first word boundary -
|
550 |
# if 3+ words, too bad.
|
551 |
if len(word_times)>1:
|
552 |
realign = np.mean([word_times[0][2],word_times[1][1]])
|
553 |
-
|
554 |
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
555 |
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
556 |
|
@@ -559,24 +407,25 @@ def plot_rmse_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, v
|
|
559 |
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
560 |
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
561 |
|
562 |
-
plt.
|
563 |
cc += 1
|
564 |
if cc >= len(colors):
|
565 |
cc=0
|
566 |
|
567 |
-
|
568 |
-
|
|
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
|
581 |
|
582 |
#plt.legend()
|
@@ -586,99 +435,7 @@ def plot_rmse_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, v
|
|
586 |
return fig
|
587 |
|
588 |
|
589 |
-
def plot_rmse_cluster(speech_data,words,seg_aligns,cluster_id):
|
590 |
-
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
591 |
-
cc = 0
|
592 |
-
fig = plt.figure(figsize=(10, 5))
|
593 |
-
plt.title(f"{words} - Energy - Cluster {cluster_id}")
|
594 |
-
for k,v in speech_data.items():
|
595 |
-
|
596 |
-
spk = k.split('**')[1]
|
597 |
|
598 |
-
word_times = seg_aligns[k]
|
599 |
-
|
600 |
-
rmse = [e for p,e in v]
|
601 |
-
# datapoint interval is 0.005 seconds
|
602 |
-
rmse_xvals = [x*0.005 for x in range(len(rmse))]
|
603 |
-
|
604 |
-
# centre around the first word boundary -
|
605 |
-
# if 3+ words, too bad.
|
606 |
-
if len(word_times)>1:
|
607 |
-
realign = np.mean([word_times[0][2],word_times[1][1]])
|
608 |
-
rmse_xvals = [x - realign for x in rmse_xvals]
|
609 |
-
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
610 |
-
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
611 |
-
|
612 |
-
if len(word_times)>2:
|
613 |
-
for i in range(1,len(word_times)-1):
|
614 |
-
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
615 |
-
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
616 |
-
|
617 |
-
plt.plot(rmse_xvals, rmse, color=colors[cc], label=f"Speaker {spk}")
|
618 |
-
cc += 1
|
619 |
-
if cc >= len(colors):
|
620 |
-
cc=0
|
621 |
-
|
622 |
-
return fig
|
623 |
-
|
624 |
-
|
625 |
-
# want to:
|
626 |
-
# - find tts best cluster
|
627 |
-
# - find avg dist for tts in that cluster
|
628 |
-
# - find avg dist for any human to the rest of its cluster
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
# see near end of notebook for v nice way to grab timespans of tts audio
|
633 |
-
# (or just the start/end timestamps to mark them) from alignment json
|
634 |
-
# based on word position index -
|
635 |
-
# so probably really do show user the sentence with each word numbered.
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
# THEN there is -
|
640 |
-
# \# Plot pitch, rmse, and spectral centroid for each word combination for each speaker
|
641 |
-
# - this is one persontoken per graph and has a word division line - idk if works >2 wds.
|
642 |
-
# it might be good to do this for tts at least, eh
|
643 |
-
|
644 |
-
|
645 |
-
# Plot pitch values for each word combination for each speaker in each cluster (with word boundaries)
|
646 |
-
# - multi speakers (one cluster) per graph - this will be good to show, with tts on top.
|
647 |
-
# i may want to recentre it around wd bound. at least if only 2 wds.
|
648 |
-
# well i could just pick, like, it will be centred around the 1st wboundary & good luck if more.
|
649 |
-
|
650 |
-
# - the same as above, but rmse
|
651 |
-
|
652 |
-
# go all the way to the bottom to see gphs with a tts added on to one cluster.
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
# will need:
|
658 |
-
# the whole sentence text (index, word) pairs
|
659 |
-
# the indices of units the user wants
|
660 |
-
# human meta db of all human recordings
|
661 |
-
# tts dir, human wav + align + f0 dirs
|
662 |
-
# list of tts voices
|
663 |
-
# an actual wav file for each human rec, probably
|
664 |
-
# params like: use f0, use rmse, (use dur), [.....]
|
665 |
-
# .. check.
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
def plot_clusters(X, y, word):
|
672 |
-
u_labels = np.unique(y)
|
673 |
-
|
674 |
-
# plot the results
|
675 |
-
for i in u_labels:
|
676 |
-
plt.scatter(X[y == i, 0], X[y == i, 1], label=i)
|
677 |
-
plt.title(word)
|
678 |
-
plt.legend()
|
679 |
-
plt.show()
|
680 |
-
|
681 |
-
|
682 |
|
683 |
|
684 |
|
|
|
16 |
|
17 |
|
18 |
|
|
|
19 |
def z_score(x, mean, std):
|
20 |
return (x - mean) / std
|
21 |
|
22 |
|
23 |
+
# given a sentence and list of its speakers + their alignment files,
|
24 |
+
# return a dictionary of word alignments
|
25 |
+
def get_word_aligns(norm_sent, aln_paths):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
Returns a dictionary of word alignments for a given sentence.
|
28 |
"""
|
29 |
word_aligns = defaultdict(list)
|
30 |
+
slist = norm_sent.split(" ")
|
31 |
|
32 |
+
for spk,aln_path in aln_paths:
|
|
|
|
|
33 |
with open(aln_path) as f:
|
34 |
lines = f.read().splitlines()
|
35 |
lines = [l.split('\t') for l in lines]
|
36 |
try:
|
37 |
assert len(lines) == len(slist)
|
38 |
+
word_aligns[spk] = [(w,float(s),float(e)) for w,s,e in lines]
|
39 |
except:
|
40 |
print(slist, lines, "<---- something didn't match")
|
41 |
return word_aligns
|
42 |
|
43 |
|
44 |
+
|
45 |
+
#TODO pass whole path
|
46 |
+
def get_pitches(start_time, end_time, fpath):
|
47 |
"""
|
48 |
Returns an array of pitch values for a given speech.
|
49 |
Reads from .f0 file of Time, F0, IsVoiced
|
50 |
"""
|
51 |
|
52 |
+
with open(fpath) as f:
|
|
|
53 |
lines = f.read().splitlines()
|
54 |
lines = [[float(x) for x in line.split()] for line in lines] # split lines into floats
|
55 |
pitches = []
|
|
|
75 |
|
76 |
|
77 |
|
78 |
+
# TODO take whole path
|
79 |
# jcheng used energy from esps get_f0
|
80 |
# get f0 says (?) :
|
81 |
#The RMS value of each record is computed based on a 30 msec hanning
|
|
|
85 |
# TODO: implement that. ?
|
86 |
# not sure librosa provides hamming window in rms function directly
|
87 |
# TODO handle audio that not originally .wav
|
88 |
+
def get_rmse(start_time, end_time, wpath):
|
89 |
"""
|
90 |
Returns an array of RMSE values for a given speech.
|
91 |
"""
|
92 |
|
93 |
+
audio, sr = librosa.load(wpath, sr=16000)
|
|
|
94 |
segment = audio[int(np.floor(start_time * sr)):int(np.ceil(end_time * sr))]
|
95 |
+
rmse = librosa.feature.rms(y=segment,frame_length=480,hop_length=80)#librosa.feature.rms(y=segment)
|
96 |
rmse = rmse[0]
|
97 |
#idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
|
98 |
return rmse#[idx]
|
99 |
|
100 |
|
101 |
+
# may be unnecessary depending how rmse and pitch window/hop are calculated already
|
102 |
def downsample_rmse2pitch(rmse,pitch_len):
|
103 |
idx = np.round(np.linspace(0, len(rmse) - 1, pitch_len)).astype(int)
|
104 |
return rmse[idx]
|
|
|
120 |
|
121 |
# take any (1stword, lastword) or (word)
|
122 |
# unit and prepare data for that unit
|
123 |
+
def get_data(norm_sent,path_key,start_end_word_index):
|
124 |
"""
|
125 |
Returns a dictionary of pitch, rmse, and spectral centroids values for a given sentence/word combinations.
|
126 |
"""
|
127 |
|
128 |
s_ix, e_ix = parse_word_indices(start_end_word_index)
|
|
|
129 |
words = '_'.join(norm_sent.split(' ')[s_ix:e_ix+1])
|
130 |
|
131 |
+
align_paths = [(spk,pdict['aln']) for spk,pdict in path_key]
|
132 |
+
word_aligns = get_word_aligns(norm_sent, align_paths)
|
133 |
+
|
134 |
data = defaultdict(list)
|
135 |
align_data = defaultdict(list)
|
136 |
|
137 |
+
for spk, pdict in path_key:
|
138 |
+
word_al = word_aligns[spk]
|
139 |
start_time = word_al[s_ix][1]
|
140 |
end_time = word_al[e_ix][2]
|
141 |
|
142 |
seg_aligns = word_al[s_ix:e_ix+1]
|
143 |
seg_aligns = [(w,round(s-start_time,2),round(e-start_time,2)) for w,s,e in seg_aligns]
|
144 |
|
145 |
+
pitches = get_pitches(start_time, end_time, pdict['f0'])
|
146 |
|
147 |
+
rmses = get_rmse(start_time, end_time, pdict['wav'])
|
148 |
rmses = downsample_rmse2pitch(rmses,len(pitches))
|
149 |
#spectral_centroids = get_spectral_centroids(start_time, end_time, id, wav_dir, len(pitches))
|
150 |
|
|
|
152 |
rmses_cpy = np.array(deepcopy(rmses))
|
153 |
d = [[p, r] for p, r in zip(pitches_cpy, rmses_cpy)]
|
154 |
#words = "-".join(word_combs)
|
155 |
+
data[f"{words}**{spk}"] = d
|
156 |
+
align_data[f"{words}**{spk}"] = seg_aligns
|
157 |
|
158 |
return words, data, align_data
|
159 |
|
160 |
+
|
|
|
161 |
|
162 |
def dtw_distance(x, y):
|
163 |
"""
|
|
|
169 |
|
170 |
|
171 |
|
|
|
172 |
# recs is a sorted list of rec IDs
|
173 |
# all recs/data contain the same words
|
174 |
# rec1 and rec2 can be the same
|
|
|
184 |
val2 = data[key2]
|
185 |
dtw_dists.append((f"{rec1}**{rec2}", dtw_distance(val1, val2)))
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
return dtw_dists
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
|
190 |
|
|
|
196 |
return y_km, kmedoids
|
197 |
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voice):
|
201 |
+
|
202 |
|
203 |
tts_info = []
|
204 |
for label in set([c for r,c in clusters]):
|
|
|
223 |
bad_cluster = tts_info[2][0]
|
224 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
225 |
|
226 |
+
#tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
227 |
+
tts_fig_p = plot_one_cluster(words,'pitch',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
228 |
+
fig_mid_p = plot_one_cluster(words,'pitch',mid_data,seg_aligns,cluster)
|
229 |
+
fig_bad_p = plot_one_cluster(words,'pitch',bad_data,seg_aligns,cluster)
|
230 |
+
|
231 |
|
232 |
+
tts_fig_e = plot_one_cluster(words,'rmse',matched_data,seg_aligns,cluster,tts_data=tts_data,tts_align=tts_align,voice=voice)
|
233 |
+
fig_mid_e = plot_one_cluster(words,'rmse',mid_data,seg_aligns,cluster)
|
234 |
+
fig_bad_e = plot_one_cluster(words,'rmse',bad_data,seg_aligns,cluster)
|
235 |
|
236 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
237 |
|
238 |
|
239 |
|
240 |
+
def gp(d,s,x):
|
241 |
+
return os.path.join(d, f'{s}.{x}')
|
242 |
+
|
243 |
+
def gen_tts_paths(tdir,voices):
|
244 |
+
plist = [(v, {'wav': gp(tdir,v,'wav'), 'aln': gp(tdir,v,'tsv'), 'f0': gp(tdir,v,'f0')}) for v in voices]
|
245 |
+
return plist
|
246 |
+
|
247 |
+
def gen_h_paths(wdir,adir,f0dir,spks):
|
248 |
+
plist = [(s, {'wav': gp(wdir,s,'wav'), 'aln': gp(adir,s,'tsv'), 'f0': gp(f0dir,s,'f0')}) for s in spks]
|
249 |
+
return plist
|
250 |
+
|
251 |
|
252 |
# since clustering strictly operates on X,
|
253 |
# once reduce a duration metric down to pair-distances,
|
|
|
257 |
# or can it not take that input in multidimensional space
|
258 |
# then the 3 dists can still be averaged to flatten, if appropriately scaled
|
259 |
|
260 |
+
def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts_sent_dir, voices, start_end_word_index):
|
261 |
|
262 |
h_spk_ids = sorted(h_spk_ids)
|
263 |
nsents = len(h_spk_ids)
|
264 |
|
265 |
+
h_all_paths = gen_h_paths(h_wav_dir,h_align_dir,h_f0_dir,h_spk_ids)
|
266 |
+
|
267 |
+
words, h_data, h_seg_aligns = get_data(norm_sent,h_all_paths,start_end_word_index)
|
268 |
|
269 |
+
dtw_dists = pair_dists(h_data,words,h_spk_ids)
|
270 |
|
271 |
kmedoids_cluster_dists = []
|
272 |
|
|
|
282 |
groups = [[r,c] for r,c in zip(h_spk_ids,kmedoids.labels_)]
|
283 |
|
284 |
|
285 |
+
tts_all_paths = gen_tts_paths(tts_sent_dir, voices)
|
286 |
+
_, tts_data, tts_seg_aligns = get_data(norm_sent,tts_all_paths,start_end_word_index)
|
287 |
+
|
288 |
for v in voices:
|
289 |
+
voice_data = tts_data[f"{words}**{v}"]
|
290 |
+
voice_align = tts_seg_aligns[f"{words}**{v}"]
|
291 |
+
|
292 |
+
#tts_data, tts_align = get_one_tts_data(tts_sent_dir,v,norm_sent,start_end_word_index)
|
293 |
|
294 |
# match the data with a cluster -----
|
295 |
+
best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups, h_data, voice_data, voice_align, words, h_seg_aligns,v)
|
296 |
|
297 |
# only supports one voice at a time currently
|
298 |
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
|
|
366 |
|
367 |
|
368 |
|
369 |
+
def plot_one_cluster(words,feature,speech_data,seg_aligns,cluster_id,tts_data=None,tts_align=None,voice=None):
|
370 |
+
#(speech_data, tts_data, tts_align, words, seg_aligns, cluster_id, voice):
|
371 |
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
372 |
cc = 0
|
373 |
fig = plt.figure(figsize=(10, 5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
+
if feature.lower() in ['pitch','f0']:
|
376 |
+
fname = 'Pitch'
|
377 |
+
ffunc = lambda x: [p for p,e in x]
|
378 |
+
elif feature.lower() in ['energy', 'rmse']:
|
379 |
+
fname = 'Energy'
|
380 |
+
ffunc = lambda x: [e for p,e in x]
|
381 |
+
else:
|
382 |
+
print('problem with the figure')
|
383 |
+
return fig
|
384 |
+
|
385 |
+
plt.title(f"{words} - {fname} - Cluster {cluster_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
for k,v in speech_data.items():
|
387 |
|
388 |
spk = k.split('**')[1]
|
389 |
|
390 |
word_times = seg_aligns[k]
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
+
feats = ffunc(v)
|
394 |
# datapoint interval is 0.005 seconds
|
395 |
+
feat_xvals = [x*0.005 for x in range(len(feats))]
|
396 |
|
397 |
# centre around the first word boundary -
|
398 |
# if 3+ words, too bad.
|
399 |
if len(word_times)>1:
|
400 |
realign = np.mean([word_times[0][2],word_times[1][1]])
|
401 |
+
feat_xvals = [x - realign for x in feat_xvals]
|
402 |
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
403 |
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
404 |
|
|
|
407 |
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
408 |
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
409 |
|
410 |
+
plt.scatter(feat_xvals, feats, color=colors[cc], label=f"Speaker {spk}")
|
411 |
cc += 1
|
412 |
if cc >= len(colors):
|
413 |
cc=0
|
414 |
|
415 |
+
if voice:
|
416 |
+
tfeats = [p for p,e in tts_data]
|
417 |
+
t_xvals = [x*0.005 for x in range(len(tfeats))]
|
418 |
|
419 |
+
if len(tts_align)>1:
|
420 |
+
realign = np.mean([tts_align[0][2],tts_align[1][1]])
|
421 |
+
t_xvals = [x - realign for x in t_xvals]
|
422 |
+
tts_align = [(w,s-realign,e-realign) for w,s,e in tts_align]
|
423 |
|
424 |
+
if len(tts_align)>2:
|
425 |
+
for i in range(1,len(tts_align)-1):
|
426 |
+
bound_line = np.mean([tts_align[i][2],tts_align[i+1][1]])
|
427 |
+
plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i+1][0]}")
|
428 |
+
plt.scatter(t_xvals, tfeats, color="black", label=f"TTS {voice}")
|
429 |
|
430 |
|
431 |
#plt.legend()
|
|
|
435 |
return fig
|
436 |
|
437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
|
441 |
|
scripts/reaper2pass.py
CHANGED
@@ -5,11 +5,13 @@ from pydub import AudioSegment
|
|
5 |
import subprocess
|
6 |
import os
|
7 |
|
|
|
8 |
# ref. Hirst The analysis by synthesis of speech melody: from data to models
|
|
|
9 |
|
10 |
|
11 |
# reaper requires wav file path input,
|
12 |
-
# not audio data
|
13 |
# reaper does NOT require 16khz mono audio.
|
14 |
def reaper_soundfile(sound_path, orig_filetype):
|
15 |
|
@@ -17,9 +19,9 @@ def reaper_soundfile(sound_path, orig_filetype):
|
|
17 |
curdir = subprocess.run(["pwd"], capture_output=True, text=True)
|
18 |
curdir = curdir.stdout.splitlines()[0]
|
19 |
fname = sound_path.split('/')[-1].replace(orig_filetype,'')
|
20 |
-
tmp_path = f'{curdir}/
|
21 |
-
if not os.path.exists(f'{curdir}/
|
22 |
-
os.mkdir(f'{curdir}/
|
23 |
aud_data.export(tmp_path, format="wav")
|
24 |
wav_path = tmp_path
|
25 |
|
@@ -31,11 +33,8 @@ def reaper_soundfile(sound_path, orig_filetype):
|
|
31 |
def get_reaper(wav_path, reaper_path, maxf0='700', minf0='50'):
|
32 |
|
33 |
f0_data = subprocess.run([reaper_path, "-i", wav_path, '-f', '/dev/stdout', '-x', maxf0, '-m', minf0, '-a'],capture_output=True).stdout
|
34 |
-
#print('PLAIN:',f0_data)
|
35 |
f0_data = f0_data.decode()
|
36 |
-
#print('DECODE-PITCH:',f0_data)
|
37 |
f0_data = f0_data.split('EST_Header_End\n')[1].splitlines()
|
38 |
-
#print(f0_data)
|
39 |
f0_data = [l.split(' ') for l in f0_data]
|
40 |
f0_data = [l for l in f0_data if len(l) == 3] # the last line or 2 lines are other info, different format
|
41 |
f0_data = [ [float(t), float(f), float(v)] for t,v,f in f0_data]
|
@@ -43,12 +42,9 @@ def get_reaper(wav_path, reaper_path, maxf0='700', minf0='50'):
|
|
43 |
return f0_data
|
44 |
|
45 |
|
46 |
-
|
47 |
-
#
|
48 |
-
#
|
49 |
-
# and write that to a text file.
|
50 |
-
# alternate would be letting reaper write its own files
|
51 |
-
# instead of capturing the stdout...
|
52 |
def save_pitch(f0_data, save_path,hed=False):
|
53 |
with open(save_path,'w') as handle:
|
54 |
if hed:
|
@@ -60,7 +56,7 @@ def save_pitch(f0_data, save_path,hed=False):
|
|
60 |
def estimate_pitch(sound_path,reaper_path = "REAPER/build/reaper"):
|
61 |
|
62 |
orig_ftype = sound_path.split('.')[-1]
|
63 |
-
if orig_ftype == '
|
64 |
wav_path = sound_path
|
65 |
else:
|
66 |
tmp_path = reaper_soundfile(sound_path, orig_ftype)
|
|
|
5 |
import subprocess
|
6 |
import os
|
7 |
|
8 |
+
# 2 pass f0 estimation
|
9 |
# ref. Hirst The analysis by synthesis of speech melody: from data to models
|
10 |
+
# python wrap for gradio app
|
11 |
|
12 |
|
13 |
# reaper requires wav file path input,
|
14 |
+
# not audio data.
|
15 |
# reaper does NOT require 16khz mono audio.
|
16 |
def reaper_soundfile(sound_path, orig_filetype):
|
17 |
|
|
|
19 |
curdir = subprocess.run(["pwd"], capture_output=True, text=True)
|
20 |
curdir = curdir.stdout.splitlines()[0]
|
21 |
fname = sound_path.split('/')[-1].replace(orig_filetype,'')
|
22 |
+
tmp_path = f'{curdir}/files_tmp/{fname}tmp.wav'
|
23 |
+
if not os.path.exists(f'{curdir}/files_tmp'):
|
24 |
+
os.mkdir(f'{curdir}/files_tmp')
|
25 |
aud_data.export(tmp_path, format="wav")
|
26 |
wav_path = tmp_path
|
27 |
|
|
|
33 |
def get_reaper(wav_path, reaper_path, maxf0='700', minf0='50'):
|
34 |
|
35 |
f0_data = subprocess.run([reaper_path, "-i", wav_path, '-f', '/dev/stdout', '-x', maxf0, '-m', minf0, '-a'],capture_output=True).stdout
|
|
|
36 |
f0_data = f0_data.decode()
|
|
|
37 |
f0_data = f0_data.split('EST_Header_End\n')[1].splitlines()
|
|
|
38 |
f0_data = [l.split(' ') for l in f0_data]
|
39 |
f0_data = [l for l in f0_data if len(l) == 3] # the last line or 2 lines are other info, different format
|
40 |
f0_data = [ [float(t), float(f), float(v)] for t,v,f in f0_data]
|
|
|
42 |
return f0_data
|
43 |
|
44 |
|
45 |
+
|
46 |
+
# save simplified data format from get_reaper
|
47 |
+
# instead of reaper's original output
|
|
|
|
|
|
|
48 |
def save_pitch(f0_data, save_path,hed=False):
|
49 |
with open(save_path,'w') as handle:
|
50 |
if hed:
|
|
|
56 |
def estimate_pitch(sound_path,reaper_path = "REAPER/build/reaper"):
|
57 |
|
58 |
orig_ftype = sound_path.split('.')[-1]
|
59 |
+
if orig_ftype == 'wav':
|
60 |
wav_path = sound_path
|
61 |
else:
|
62 |
tmp_path = reaper_soundfile(sound_path, orig_ftype)
|
scripts/runSQ.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import os, unicodedata
|
2 |
from scripts.ctcalign import aligner, wav16m
|
3 |
from scripts.tapi import tiro
|
4 |
from scripts.reaper2pass import estimate_pitch, save_pitch
|
@@ -30,23 +30,24 @@ def run(sentence, voices, start_end_word_ix):
|
|
30 |
|
31 |
|
32 |
norm_sentence = snorm(sentence)
|
|
|
33 |
|
34 |
-
|
35 |
-
if meta:
|
36 |
-
align_human(meta,speech_aligns,speech_dir,align_model_path)
|
37 |
-
f0_human(meta, speech_f0, speech_dir)
|
38 |
-
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
|
39 |
|
40 |
if voices:
|
|
|
|
|
41 |
voices = [voices[0]] # TODO. now limit one voice at a time.
|
42 |
-
|
43 |
-
f0_tts(sentence, voices, tts_dir)
|
44 |
-
|
45 |
-
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
|
46 |
|
47 |
# also stop forgetting duration.
|
48 |
|
49 |
-
return
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
def snorm(s):
|
@@ -54,6 +55,7 @@ def snorm(s):
|
|
54 |
while ' ' in s:
|
55 |
s = s.replace(' ', ' ')
|
56 |
return s
|
|
|
57 |
|
58 |
|
59 |
def create_temp_sent_list():
|
@@ -66,156 +68,155 @@ def create_temp_sent_list():
|
|
66 |
|
67 |
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# find all the recordings of a given sentence
|
71 |
# listed in the corpus metadata.
|
|
|
72 |
# sentence should be provided lowercase without punctuation
|
73 |
-
# TODO something not fatal to interface if <10
|
74 |
-
|
|
|
|
|
|
|
75 |
with open(corpusdb,'r') as handle:
|
76 |
meta = handle.read().splitlines()
|
77 |
meta = [l.split('\t') for l in meta[1:]]
|
78 |
|
|
|
79 |
# column index 4 of db is normalised sentence text
|
80 |
-
|
81 |
|
82 |
-
if len(
|
83 |
-
if len(
|
84 |
print('This sentence does not exist in the corpus')
|
85 |
else:
|
86 |
print('Under 10 copies of the sentence: skipping.')
|
87 |
return []
|
88 |
else:
|
89 |
-
print(f'{len(
|
90 |
-
return
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# check if word alignments exist for a set of human speech recordings
|
95 |
-
# if not, warn, and make them with ctcalign.
|
96 |
-
def align_human(meta,align_dir,speech_dir,model_path):
|
97 |
-
|
98 |
-
model_word_sep = '|'
|
99 |
-
model_blank_tk = '[PAD]'
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
apath = align_dir + rec[2].replace('.wav','.tsv')
|
105 |
-
if not os.path.exists(apath):
|
106 |
-
no_align.append(rec)
|
107 |
-
|
108 |
-
if no_align:
|
109 |
-
print(f'Need to run alignment for {len(no_align)} files')
|
110 |
-
if not os.path.exists(align_dir):
|
111 |
os.makedirs(align_dir)
|
|
|
|
|
112 |
|
113 |
-
caligner = aligner(model_path,model_word_sep,model_blank_tk)
|
114 |
-
for rec in no_align:
|
115 |
-
#wav_path = f'{speech_dir}{rec[1]}/{rec[2]}'
|
116 |
-
wav_path = f'{speech_dir}{rec[2]}'
|
117 |
-
word_aln = caligner(wav16m(wav_path),rec[4],is_normed=True)
|
118 |
-
apath = align_dir + rec[2].replace('.wav','.tsv')
|
119 |
-
word_aln = [[str(x) for x in l] for l in word_aln]
|
120 |
-
with open(apath,'w') as handle:
|
121 |
-
handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
|
122 |
-
else:
|
123 |
-
print('All alignments existed')
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
# check if f0s exist for all of those files.
|
128 |
-
# if not, warn, and make them with TODO reaper
|
129 |
-
def f0_human(meta, f0_dir, speech_dir, reaper_path = "REAPER/build/reaper"):
|
130 |
-
no_f0 = []
|
131 |
-
|
132 |
for rec in meta:
|
|
|
|
|
|
|
|
|
|
|
133 |
fpath = f0_dir + rec[2].replace('.wav','.f0')
|
134 |
if not os.path.exists(fpath):
|
135 |
-
no_f0.append(rec)
|
136 |
-
|
137 |
-
if no_f0:
|
138 |
-
print(f'Need to estimate pitch for {len(no_f0)} recordings')
|
139 |
-
if not os.path.exists(f0_dir):
|
140 |
-
os.makedirs(f0_dir)
|
141 |
-
for rec in no_f0:
|
142 |
-
wav_path = f'{speech_dir}{rec[2]}'
|
143 |
fpath = f0_dir + rec[2].replace('.wav','.f0')
|
144 |
-
f0_data = estimate_pitch(
|
145 |
save_pitch(f0_data,fpath)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
else:
|
153 |
-
print('All speech pitch trackings existed')
|
154 |
|
155 |
|
156 |
|
157 |
|
158 |
-
# check if the TTS wavs
|
159 |
-
# if not,
|
160 |
-
def get_tts(sentence,voices,ttsdir):
|
161 |
|
162 |
-
|
163 |
-
dpath = sentence.replace(' ','_')[:65]
|
164 |
-
|
165 |
-
no_voice = []
|
166 |
|
167 |
-
|
|
|
|
|
|
|
168 |
|
169 |
for v in voices:
|
170 |
-
wpath = f'{
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
if not
|
175 |
-
|
176 |
-
temp_json_path = jpath
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
184 |
|
185 |
-
else:
|
186 |
-
print('TTS for all voices existed')
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
|
191 |
|
192 |
-
#
|
193 |
-
#
|
194 |
-
#
|
195 |
-
|
196 |
-
|
197 |
-
# assume the first 64 chars of sentence are enough
|
198 |
-
dpath = sentence.replace(' ','_')[:65]
|
199 |
|
200 |
-
|
|
|
201 |
|
202 |
-
|
203 |
-
fpath = f'{ttsdir}{dpath}/{v}.f0'
|
204 |
-
if not os.path.exists(fpath):
|
205 |
-
no_f0.append(v)
|
206 |
-
|
207 |
-
|
208 |
-
if no_f0:
|
209 |
-
print(f'Need to estimate pitch for {len(no_f0)} voices')
|
210 |
-
for v in voices:
|
211 |
-
wav_path = f'{ttsdir}{dpath}/{v}.wav'
|
212 |
-
fpath = f'{ttsdir}{dpath}/{v}.f0'
|
213 |
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
|
221 |
|
@@ -239,21 +240,20 @@ def localtest():
|
|
239 |
reaper_exc = '/home/caitlinr/work/notterra/REAPER/build/reaper'
|
240 |
|
241 |
norm_sentence = snorm(sentence)
|
242 |
-
meta = get_recordings(norm_sentence, corpus_meta)
|
243 |
-
#print(meta)
|
244 |
-
if meta:
|
245 |
-
align_human(meta,speech_aligns,speech_dir,align_model_path)
|
246 |
-
f0_human(meta, speech_f0, speech_dir, reaper_path = reaper_exc )
|
247 |
|
248 |
-
|
|
|
249 |
|
250 |
if voices:
|
251 |
-
|
252 |
-
|
253 |
-
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
|
254 |
|
|
|
|
|
|
|
255 |
|
256 |
-
|
|
|
257 |
|
258 |
|
259 |
|
|
|
1 |
+
import os, unicodedata, string, secrets
|
2 |
from scripts.ctcalign import aligner, wav16m
|
3 |
from scripts.tapi import tiro
|
4 |
from scripts.reaper2pass import estimate_pitch, save_pitch
|
|
|
30 |
|
31 |
|
32 |
norm_sentence = snorm(sentence)
|
33 |
+
sentence = sentence.replace('\t', ' ')
|
34 |
|
35 |
+
human_rec_ids = get_samromur_queries(norm_sentence, corpus_meta, speech_dir, speech_aligns, align_model_path, speech_f0)
|
|
|
|
|
|
|
|
|
36 |
|
37 |
if voices:
|
38 |
+
temp_tts_sample, tts_sent_dir = get_tts(sentence,voices,tts_dir,align_model_path)
|
39 |
+
|
40 |
voices = [voices[0]] # TODO. now limit one voice at a time.
|
41 |
+
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_sent_dir, voices, start_end_word_ix)
|
|
|
|
|
|
|
42 |
|
43 |
# also stop forgetting duration.
|
44 |
|
45 |
+
return temp_tts_sample, score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
|
52 |
|
53 |
def snorm(s):
|
|
|
55 |
while ' ' in s:
|
56 |
s = s.replace(' ', ' ')
|
57 |
return s
|
58 |
+
|
59 |
|
60 |
|
61 |
def create_temp_sent_list():
|
|
|
68 |
|
69 |
|
70 |
|
71 |
+
def align_file(wav_path, output_path, norm_sentence, word_aligner = None, model_path = "carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"):
|
72 |
+
|
73 |
+
model_word_sep = '|'
|
74 |
+
model_blank_tk = '[PAD]'
|
75 |
+
|
76 |
+
if not word_aligner:
|
77 |
+
print('initiating forced alignment, can take some time...')
|
78 |
+
word_aligner = aligner(model_path,model_word_sep,model_blank_tk)
|
79 |
+
|
80 |
+
word_aln = word_aligner(wav16m(wav_path),norm_sentence,is_normed=True)
|
81 |
+
word_aln = [[str(x) for x in l] for l in word_aln]
|
82 |
+
|
83 |
+
with open(output_path,'w') as handle:
|
84 |
+
handle.write(''.join(['\t'.join(l)+'\n' for l in word_aln]))
|
85 |
+
|
86 |
+
return word_aligner
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
|
91 |
# find all the recordings of a given sentence
|
92 |
# listed in the corpus metadata.
|
93 |
+
# find or create their alignments and f0 tracking.
|
94 |
# sentence should be provided lowercase without punctuation
|
95 |
+
# TODO something not fatal to interface if <10 --
|
96 |
+
# metadata file for SQ is already filtered.
|
97 |
+
# TODO handle audio that is not originally .wav
|
98 |
+
# not an issue for SQ
|
99 |
+
def get_samromur_queries(sentence, corpusdb, speech_dir, align_dir, align_model_path, f0_dir, reaper_path = "REAPER/build/reaper"):
|
100 |
with open(corpusdb,'r') as handle:
|
101 |
meta = handle.read().splitlines()
|
102 |
meta = [l.split('\t') for l in meta[1:]]
|
103 |
|
104 |
+
|
105 |
# column index 4 of db is normalised sentence text
|
106 |
+
meta = [l for l in meta if l[4] == sentence]
|
107 |
|
108 |
+
if len(meta) < 10:
|
109 |
+
if len(meta) < 1:
|
110 |
print('This sentence does not exist in the corpus')
|
111 |
else:
|
112 |
print('Under 10 copies of the sentence: skipping.')
|
113 |
return []
|
114 |
else:
|
115 |
+
print(f'{len(meta)} recordings of sentence <{sentence}>')
|
116 |
+
#return meta
|
117 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
word_aligner = None
|
120 |
|
121 |
+
if not os.path.exists(align_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
os.makedirs(align_dir)
|
123 |
+
if not os.path.exists(f0_dir):
|
124 |
+
os.makedirs(f0_dir)
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
|
|
|
|
|
|
|
|
|
|
127 |
for rec in meta:
|
128 |
+
wpath = f'{speech_dir}{rec[2]}'
|
129 |
+
apath = align_dir + rec[2].replace('.wav','.tsv')
|
130 |
+
if not os.path.exists(apath):
|
131 |
+
word_aligner = align_file(wpath,apath, rec[4], word_aligner = word_aligner, model_path = align_model_path)
|
132 |
+
|
133 |
fpath = f0_dir + rec[2].replace('.wav','.f0')
|
134 |
if not os.path.exists(fpath):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
fpath = f0_dir + rec[2].replace('.wav','.f0')
|
136 |
+
f0_data = estimate_pitch(wpath, reaper_path)
|
137 |
save_pitch(f0_data,fpath)
|
138 |
+
|
139 |
+
|
140 |
+
human_rec_ids = sorted([l[2].split('.wav')[0] for l in meta])
|
141 |
+
return human_rec_ids
|
142 |
+
|
|
|
|
|
|
|
143 |
|
144 |
|
145 |
|
146 |
|
147 |
+
# check if the TTS wavs, alignments, f0 exist for this sentence
|
148 |
+
# if not, make them
|
149 |
+
def get_tts(sentence,voices,ttsdir,align_model_path,reaper_path = "REAPER/build/reaper"):
|
150 |
|
151 |
+
dpath = setup_tts_sent(sentence,ttsdir)
|
|
|
|
|
|
|
152 |
|
153 |
+
|
154 |
+
sample_paths = []
|
155 |
+
|
156 |
+
word_aligner = None
|
157 |
|
158 |
for v in voices:
|
159 |
+
wpath = f'{dpath}/{v}.wav'
|
160 |
+
apath = f'{dpath}/{v}.tsv'
|
161 |
+
fpath = f'{dpath}/{v}.f0'
|
162 |
+
|
163 |
+
if not os.path.exists(wpath):
|
164 |
+
wf = tiro(sentence,v,save=f'{dpath}/')
|
|
|
165 |
|
166 |
+
if not os.path.exists(apath):
|
167 |
+
word_aligner = align_file(wpath, apath, snorm(sentence), word_aligner = word_aligner, model_path = align_model_path)
|
168 |
+
|
169 |
+
|
170 |
+
if not os.path.exists(fpath):
|
171 |
+
f0_data = estimate_pitch(wpath, reaper_path)
|
172 |
+
save_pitch(f0_data,fpath)
|
173 |
+
|
174 |
+
sample_paths.append(wpath)
|
175 |
|
|
|
|
|
176 |
|
177 |
+
# TEMP
|
178 |
+
# return for single last voice
|
179 |
+
temp_sample_path = wpath
|
180 |
+
|
181 |
+
return temp_sample_path, dpath
|
182 |
+
|
183 |
|
184 |
|
185 |
|
186 |
+
# find if dir for this sentence exists yet
|
187 |
+
# or make one, and record it.
|
188 |
+
# punctuation can affect synthesis
|
189 |
+
# so index by original sentence, not normed text
|
190 |
+
def setup_tts_sent(sentence,ttsdir,meta_path = 'tts_meta.tsv'):
|
|
|
|
|
191 |
|
192 |
+
if not os.path.exists(f'{ttsdir}'):
|
193 |
+
os.makedirs(f'{ttsdir}')
|
194 |
|
195 |
+
sentence = sentence.replace('\n',' ')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
with open(f'{ttsdir}{meta_path}','a+') as handle:
|
198 |
+
tts_meta = handle.read().splitlines()
|
199 |
+
tts_meta = [l.split('\t') for l in tts_meta]
|
200 |
+
|
201 |
+
tts_meta = {sent:s_id for s_id,sent in tts_meta}
|
202 |
|
203 |
+
if sentence not in tts_meta.keys():
|
204 |
+
sent_id = sentence.replace(' ','_')[:33]
|
205 |
+
rand_id = ''.join(secrets.choice(string.ascii_lowercase + string.digits) for i in range(6))
|
206 |
+
while f'{sent_id}_{rand_id}' in tts_meta.values():
|
207 |
+
rand_id = ''.join(secrets.choice(string.ascii_lowercase + string.digits) for i in range(6))
|
208 |
+
sent_id = f'{sent_id}_{rand_id}'
|
209 |
+
|
210 |
+
handle.write(f'{sent_id}\t{sentence}\n')
|
211 |
+
|
212 |
+
else:
|
213 |
+
sent_id = tts_meta[sentence]
|
214 |
+
|
215 |
+
sent_dir = f'{ttsdir}{sent_id}'
|
216 |
+
if not os.path.exists(f'{sent_dir}'):
|
217 |
+
os.makedirs(f'{sent_dir}')
|
218 |
+
return sent_dir
|
219 |
+
|
220 |
|
221 |
|
222 |
|
|
|
240 |
reaper_exc = '/home/caitlinr/work/notterra/REAPER/build/reaper'
|
241 |
|
242 |
norm_sentence = snorm(sentence)
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
+
|
245 |
+
human_rec_ids = get_samromur_queries(norm_sentence, corpus_meta, speech_dir, speech_aligns, align_model_path, speech_f0, reaper_path = reaper_exc)
|
246 |
|
247 |
if voices:
|
248 |
+
|
249 |
+
one_audio_sample, tts_sent_dir = get_tts(sentence,voices,tts_dir,align_model_path,reaper_path = reaper_exc)
|
|
|
250 |
|
251 |
+
voices = [voices[0]] # TODO. now limit one voice at a time.
|
252 |
+
|
253 |
+
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_sent_dir, voices, start_end_word_ix)
|
254 |
|
255 |
+
|
256 |
+
|
257 |
|
258 |
|
259 |
|
scripts/tapi.py
CHANGED
@@ -2,12 +2,11 @@ import json, os, requests, warnings, wave
|
|
2 |
warnings.filterwarnings("ignore")
|
3 |
|
4 |
|
5 |
-
|
6 |
# synthesise speech
|
7 |
-
#
|
8 |
-
#
|
9 |
-
#
|
10 |
-
def tiro(text,voice,save='./'):
|
11 |
|
12 |
# endpoint working 2023
|
13 |
url = 'https://tts.tiro.is/v0/speech'
|
@@ -24,7 +23,21 @@ def tiro(text,voice,save='./'):
|
|
24 |
"VoiceId": voice
|
25 |
}
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# word time alignments
|
|
|
|
|
|
|
28 |
payload_aln = {
|
29 |
"Engine": "standard",
|
30 |
"LanguageCode": "is-IS",
|
@@ -33,37 +46,18 @@ def tiro(text,voice,save='./'):
|
|
33 |
"Text": text,
|
34 |
"VoiceId": voice
|
35 |
}
|
36 |
-
|
37 |
-
|
38 |
-
tts_data = requests.post(url, headers=headers, json=payload_tts, verify=False)
|
39 |
-
aln_data = requests.post(url, headers=headers, json=payload_aln, verify=False)
|
40 |
-
|
41 |
-
|
42 |
-
#fname = save+text.replace(':','').replace('/','-')
|
43 |
-
#wname = fname+'.wav'
|
44 |
-
#aname = fname+'.json'
|
45 |
-
wname = save+voice+'.wav'
|
46 |
aname = save+voice+'.json'
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
with open(aname,'w') as f:
|
55 |
-
f.write('{"alignments": [')
|
56 |
-
f.write(aln_data.content.decode().replace('}\n{','},\n {'))
|
57 |
-
f.write(']}')
|
58 |
-
|
59 |
-
return(os.path.abspath(wname),os.path.abspath(aname))
|
60 |
|
61 |
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
#sentence = "Hæ hæ hæ hæ! Ég heiti Gervimaður Finnland, en þú?"
|
65 |
-
#voice = "Alfur"
|
66 |
|
67 |
-
#wf, af = tiro(sentence,voice)
|
68 |
|
69 |
-
#print(wf, af)
|
|
|
2 |
warnings.filterwarnings("ignore")
|
3 |
|
4 |
|
|
|
5 |
# synthesise speech
|
6 |
+
# save 16khz mono wav file
|
7 |
+
# return path to wave file
|
8 |
+
# saving word alignment timestamps is deprecating
|
9 |
+
def tiro(text,voice,save='./',tiroalign = False):
|
10 |
|
11 |
# endpoint working 2023
|
12 |
url = 'https://tts.tiro.is/v0/speech'
|
|
|
23 |
"VoiceId": voice
|
24 |
}
|
25 |
|
26 |
+
wname = save+voice+'.wav'
|
27 |
+
tts_data = requests.post(url, headers=headers, json=payload_tts, verify=False)
|
28 |
+
|
29 |
+
with wave.open(wname,'wb') as f:
|
30 |
+
f.setnchannels(1)
|
31 |
+
f.setframerate(16000)
|
32 |
+
f.setsampwidth(2)
|
33 |
+
f.writeframes(tts_data.content)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
# word time alignments
|
38 |
+
# SKIP
|
39 |
+
# tiro no longer intends to support this
|
40 |
+
# and only does support it for 2 voices anyway
|
41 |
payload_aln = {
|
42 |
"Engine": "standard",
|
43 |
"LanguageCode": "is-IS",
|
|
|
46 |
"Text": text,
|
47 |
"VoiceId": voice
|
48 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
aname = save+voice+'.json'
|
50 |
|
51 |
+
if tiroalign:
|
52 |
+
aln_data = requests.post(url, headers=headers, json=payload_aln, verify=False)
|
53 |
+
with open(aname,'w') as f:
|
54 |
+
f.write('{"alignments": [')
|
55 |
+
f.write(aln_data.content.decode().replace('}\n{','},\n {'))
|
56 |
+
f.write(']}')
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
+
#return(os.path.abspath(wname),os.path.abspath(aname))
|
60 |
+
return os.path.abspath(wname)
|
61 |
|
|
|
|
|
|
|
62 |
|
|
|
63 |
|
|