Spaces:
Runtime error
Runtime error
File size: 2,135 Bytes
5a3dfd3 e6995ca 6dcded2 5a3dfd3 e2aae4e 5a3dfd3 6dcded2 b483613 e6995ca b483613 5a3dfd3 1943daa d37873a 6dcded2 be469ef 03898c7 5ddbbe2 03898c7 6dcded2 03898c7 6dcded2 e6995ca c80a17d 9ba6616 5ddbbe2 c80a17d a01ad06 8ce9b88 a01ad06 5a3dfd3 0900976 5a3dfd3 a93e3be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
os.system("pip install imageio")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")
model = hub.Module(name='U2Net')
def infer(img,option):
print(type(img))
print(type(img["image"]))
print(type(img["mask"]))
imageio.imwrite("./data/data.png", img["image"])
if option == "automatic (U2net)":
result = model.Segmentation(
images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
im = Image.fromarray(result[0]['mask'])
im.save("./data/data_mask.png")
else:
imageio.imwrite("./data/data_mask.png", img["mask"])
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
return "./dataout/data_mask.png","./data/data_mask.png"
inputs = [gr.Image(tool="sketch", label="Input",type="numpy"),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="file",label="Mask")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
['person512.png',"automatic (U2net)"],
['person512.png',"manual"]
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |