Ahsen Khaliq commited on
Commit
5a3dfd3
·
1 Parent(s): 816a3e6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import paddlehub as hub
4
+ import gradio as gr
5
+ import torch
6
+ from PIL import Image
7
+ import numpy as np
8
+
9
+ # Images
10
+ torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2018/08/12/16/59/ara-3601194_1280.jpg', 'parrot.jpg')
11
+ torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg')
12
+ model = hub.Module(name='U2Net')
13
+ def infer(img):
14
+ img.save("./data/data.png")
15
+ result = model.Segmentation(
16
+ images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
17
+ paths=None,
18
+ batch_size=1,
19
+ input_size=320,
20
+ output_dir='output',
21
+ visualization=True)
22
+ im = Image.fromarray(result[0]['mask'])
23
+ im.save("./data/data_mask.png")
24
+ os.system('python predict.py model.path=./big-lama indir=./data outdir=./dataout device=cpu')
25
+ return "./dataout/data_mask.png"
26
+ inputs = gr.inputs.Image(type='file', label="Original Image")
27
+ outputs = gr.outputs.Image(type="numpy",label="output")
28
+ title = "U^2-Net"
29
+ description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
30
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.09007'>U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection</a> | <a href='https://github.com/xuebinqin/U-2-Net'>Github Repo</a></p>"
31
+ examples = [
32
+ ['fox.jpg'],
33
+ ['parrot.jpg']
34
+ ]
35
+ gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()