akhaliq HF staff commited on
Commit
1943daa
·
1 Parent(s): d1ee4cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -11,8 +11,8 @@ os.mkdir("data")
11
  os.rename("best.ckpt", "models/best.ckpt")
12
  os.mkdir("dataout")
13
  model = hub.Module(name='U2Net')
14
- def infer(img,mask,option):
15
- img = ImageOps.contain(img, (700,700))
16
  width, height = img.size
17
  img.save("./data/data.png")
18
  if option == "automatic (U2net)":
@@ -25,13 +25,13 @@ def infer(img,mask,option):
25
  visualization=True)
26
  im = Image.fromarray(result[0]['mask'])
27
  else:
28
- mask = mask.resize((width,height))
29
  im = mask
30
  im.save("./data/data_mask.png")
31
  os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
32
  return "./dataout/data_mask.png",im
33
 
34
- inputs = [gr.inputs.Image(type='pil', label="Original Image"),gr.inputs.Image(type='pil',source="canvas", label="Mask",invert_colors=True),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
35
  outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask")]
36
  title = "LaMa Image Inpainting"
37
  description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
 
11
  os.rename("best.ckpt", "models/best.ckpt")
12
  os.mkdir("dataout")
13
  model = hub.Module(name='U2Net')
14
+ def infer(img,option):
15
+ img = ImageOps.contain(img["image"], (700,700))
16
  width, height = img.size
17
  img.save("./data/data.png")
18
  if option == "automatic (U2net)":
 
25
  visualization=True)
26
  im = Image.fromarray(result[0]['mask'])
27
  else:
28
+ mask = img["mask"].resize((width,height))
29
  im = mask
30
  im.save("./data/data_mask.png")
31
  os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
32
  return "./dataout/data_mask.png",im
33
 
34
+ inputs = [gr.inputs.Image(type='pil',tool="sketch", label="Input"),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
35
  outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask")]
36
  title = "LaMa Image Inpainting"
37
  description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"