akhaliq HF staff commited on
Commit
6dcded2
·
1 Parent(s): 214cca7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -1,12 +1,13 @@
1
  import os
2
  os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
3
-
4
  import cv2
5
  import paddlehub as hub
6
  import gradio as gr
7
  import torch
8
  from PIL import Image, ImageOps
9
  import numpy as np
 
10
  os.mkdir("data")
11
  os.rename("best.ckpt", "models/best.ckpt")
12
  os.mkdir("dataout")
@@ -16,11 +17,7 @@ def infer(img,option):
16
  print(type(img["image"]))
17
  print(type(img["mask"]))
18
  print(type(Image.fromarray(img["image"]))
19
- img = Image.fromarray(img["image"])
20
- mask = Image.fromarray(img["mask"])
21
- img = ImageOps.contain(img, (700,700))
22
- width, height = img.size
23
- img.save("./data/data.png")
24
  if option == "automatic (U2net)":
25
  result = model.Segmentation(
26
  images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
@@ -30,9 +27,9 @@ def infer(img,option):
30
  output_dir='output',
31
  visualization=True)
32
  im = Image.fromarray(result[0]['mask'])
 
33
  else:
34
- mask = mask.resize((width,height))
35
- mask.save("./data/data_mask.png")
36
  os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
37
  return "./dataout/data_mask.png",mask
38
 
 
1
  import os
2
  os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
3
+ os.system("pip install imageio")
4
  import cv2
5
  import paddlehub as hub
6
  import gradio as gr
7
  import torch
8
  from PIL import Image, ImageOps
9
  import numpy as np
10
+ import imageio
11
  os.mkdir("data")
12
  os.rename("best.ckpt", "models/best.ckpt")
13
  os.mkdir("dataout")
 
17
  print(type(img["image"]))
18
  print(type(img["mask"]))
19
  print(type(Image.fromarray(img["image"]))
20
+ imageio.imwrite("./data/data.png", img["image"])
 
 
 
 
21
  if option == "automatic (U2net)":
22
  result = model.Segmentation(
23
  images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
 
27
  output_dir='output',
28
  visualization=True)
29
  im = Image.fromarray(result[0]['mask'])
30
+ im.save("./data/data_mask.png")
31
  else:
32
+ imageio.imwrite("./data/data_mask.png", img["mask"])
 
33
  os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
34
  return "./dataout/data_mask.png",mask
35