File size: 22,654 Bytes
47bb03b 63c4bae 687e655 c9e9d08 c276eea 59f04fa e83ff6f 687e655 9de3656 035cc4c bd7db8c dbe7113 8093d20 ca05f83 4e71ba8 4bf0414 9de3656 15cbd1a a700e01 687e655 21b67ad fb43993 687e655 9517048 687e655 47bb03b 687e655 215b1af 687e655 9fd29b1 687e655 47bb03b 687e655 47bb03b 687e655 47bb03b 687e655 47bb03b 687e655 428e1b4 69f6cc9 687e655 adb8651 006907c 687e655 73bbc25 a0251ba 73bbc25 a159f7b c376e84 3ba84df 687e655 ccf75a9 687e655 6fe43d7 1d1e6d2 687e655 ac39380 687e655 1d1e6d2 687e655 9330dc0 88a67db a31268a a700e01 9330dc0 88a67db 9330dc0 a700e01 6fe43d7 1d1e6d2 687e655 b31a744 a700e01 71c5dd6 687e655 845422c efc676c a8a3414 baade56 a8a3414 845422c a8a3414 efc676c d5b9a4b efc676c d5b9a4b 0a9cab7 b269ba6 845422c 1d1e6d2 69f6cc9 70e239c 687e655 21368b7 88a67db 73bbc25 88a67db 73bbc25 845422c 73bbc25 845422c 73bbc25 d5b9a4b 687e655 1d1e6d2 687e655 1d1e6d2 687e655 1d1e6d2 59f04fa 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e c9e9d08 1d8e82e 59f04fa 00cabc9 cefb462 b177a3b c276eea 264274f b177a3b 59f04fa 1d8e82e 59f04fa cefb462 dbe7113 59f04fa dbe7113 8093d20 dbe7113 8093d20 3acc282 59f04fa f1b5408 59f04fa 3acc282 59f04fa 3acc282 59f04fa dbe7113 767163f 863266f 3acc282 863266f 8093d20 dbe7113 e3da060 dbe7113 4e71ba8 3acc282 863266f 4e71ba8 863266f 3acc282 863266f dbe7113 863266f dbe7113 863266f 3acc282 863266f d438606 4e71ba8 ca05f83 4e71ba8 41a0245 ca05f83 4e71ba8 9330dc0 4e71ba8 41a0245 3ed90c0 4a2e676 4e71ba8 41a0245 9330dc0 41a0245 2211b4e 3e9b131 41a0245 949f34f 3e9b131 41a0245 4e71ba8 41a0245 ca05f83 3ed90c0 9330dc0 3ed90c0 3e9b131 3ed90c0 949f34f 3e9b131 800f181 4e71ba8 45ac74a 97cae0f 4e71ba8 97cae0f 88a67db 800f181 f1b5408 c7a5c57 136cf90 97cae0f f89fe5c f1b5408 f89fe5c 136cf90 97cae0f c7a5c57 3ba84df f1b5408 c7a5c57 3ba84df 97cae0f 093c823 97cae0f 019a372 97cae0f 316b59f 97cae0f 800f181 882e286 800f181 882e286 800f181 882e286 800f181 882e286 800f181 97cae0f 800f181 845422c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import numpy as np
import streamlit as st
import librosa
import soundfile as sf
import librosa.display
from config import CONFIG
import torch
from dataset import MaskGenerator
import onnxruntime, onnx
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from pystoi import stoi
from pesq import pesq
import pandas as pd
import torchaudio
from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
from PLCMOS.plc_mos import PLCMOSEstimator
from speechmos import dnsmos
from speechmos import plcmos
import speech_recognition as speech_r
from jiwer import wer
import time
@st.cache
def load_model(model):
path = 'lightning_logs/version_0/checkpoints/' + str(model)
onnx_model = onnx.load(path)
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 2
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session = onnxruntime.InferenceSession(path, options)
input_names = [x.name for x in session.get_inputs()]
output_names = [x.name for x in session.get_outputs()]
return session, onnx_model, input_names, output_names
def inference(re_im, session, onnx_model, input_names, output_names):
inputs = {input_names[i]: np.zeros([d.dim_value for d in _input.type.tensor_type.shape.dim],
dtype=np.float32)
for i, _input in enumerate(onnx_model.graph.input)
}
output_audio = []
for t in range(re_im.shape[0]):
inputs[input_names[0]] = re_im[t]
out, prev_mag, predictor_state, mlp_state = session.run(output_names, inputs)
inputs[input_names[1]] = prev_mag
inputs[input_names[2]] = predictor_state
inputs[input_names[3]] = mlp_state
output_audio.append(out)
output_audio = torch.tensor(np.concatenate(output_audio, 0))
output_audio = output_audio.permute(1, 0, 2).contiguous()
output_audio = torch.view_as_complex(output_audio)
output_audio = torch.istft(output_audio, window, stride, window=hann)
return output_audio.numpy()
def visualize(hr, lr, recon, sr):
sr = sr
window_size = 1024
window = np.hanning(window_size)
stft_hr = librosa.core.spectrum.stft(hr, n_fft=window_size, hop_length=512, window=window)
stft_hr = 2 * np.abs(stft_hr) / np.sum(window)
stft_lr = librosa.core.spectrum.stft(lr, n_fft=window_size, hop_length=512, window=window)
stft_lr = 2 * np.abs(stft_lr) / np.sum(window)
stft_recon = librosa.core.spectrum.stft(recon, n_fft=window_size, hop_length=512, window=window)
stft_recon = 2 * np.abs(stft_recon) / np.sum(window)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 12))
ax1.title.set_text('Оригинальный сигнал')
ax2.title.set_text('Сигнал с потерями')
ax3.title.set_text('Улучшенный сигнал')
canvas = FigureCanvas(fig)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_hr), ax=ax1, y_axis='log', x_axis='time', sr=sr)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_lr), ax=ax2, y_axis='log', x_axis='time', sr=sr)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_recon), ax=ax3, y_axis='log', x_axis='time', sr=sr)
ax1.set_xlabel('Время, с')
ax1.set_ylabel('Частота, Гц')
ax2.set_xlabel('Время, с')
ax2.set_ylabel('Частота, Гц')
ax3.set_xlabel('Время, с')
ax3.set_ylabel('Частота, Гц')
return fig
def waveplot(hr, lr, recon, sr):
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 12))
ax1.title.set_text('Оригинальный сигнал')
ax2.title.set_text('Сигнал с потерями')
ax3.title.set_text('Улучшенный сигнал')
canvas = FigureCanvas(fig)
p = librosa.display.waveshow(hr, ax=ax1, sr=sr)
p = librosa.display.waveshow(lr, ax=ax2, sr=sr)
p = librosa.display.waveshow(recon, ax=ax3, sr=sr)
ax1.set_xlabel('Время, с')
#ax1.set_ylabel('Частота, Гц')
ax2.set_xlabel('Время, с')
#ax2.set_ylabel('Частота, Гц')
ax3.set_xlabel('Время, с')
#ax3.set_ylabel('Частота, Гц')
return fig
def sign_x_y(x,y):
if x>y:
return '-'
else:
return ''
packet_size = CONFIG.DATA.EVAL.packet_size
window = CONFIG.DATA.window_size
stride = CONFIG.DATA.stride
title = 'Маскировка потерь пакетов'
st.set_page_config(page_title=title, page_icon=":sound:")
st.title(title)
st.subheader('1. Загрузка аудио')
uploaded_file = st.file_uploader("Загрузите аудио формата (.wav) 48 КГц")
is_file_uploaded = uploaded_file is not None
if not is_file_uploaded:
uploaded_file = 'sample.wav'
target, sr = librosa.load(uploaded_file, sr=48000)
target = target[:packet_size * (len(target) // packet_size)]
st.text('Ваше аудио')
st.audio(uploaded_file)
model_ver = st.selectbox(
'Веса оригинальной модели выбраны по умолчанию. Выберите модель',
('frn.onnx', 'frn_out_QInt16.onnx', 'frn_out_QInt8.onnx', 'frn_out_QUInt8.onnx', 'frn_out_QUInt16.onnx', 'frn_fp16.onnx'))
st.write('Вы выбрали:', model_ver)
lang = st.selectbox(
'Выберите язык вашего аудио для корректной работы распознавания речи',
('ru-RU', 'en-EN'))
st.write('Вы выбрали:', lang)
st.subheader('2. Выберите желаемый процент потерь')
slider = [st.slider("Ожидаемый процент потерь для генератора потерь цепи Маркова", 0, 100, step=1)]
loss_percent = float(slider[0])/100
mask_gen = MaskGenerator(is_train=False, probs=[(1 - loss_percent, loss_percent)])
lossy_input = target.copy().reshape(-1, packet_size)
mask = mask_gen.gen_mask(len(lossy_input), seed=0)[:, np.newaxis]
lossy_input *= mask
lossy_input = lossy_input.reshape(-1)
hann = torch.sqrt(torch.hann_window(window))
lossy_input_tensor = torch.tensor(lossy_input)
re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(1).numpy().astype(np.float32)
session, onnx_model, input_names, output_names = load_model(model_ver)
with st.sidebar:
st.title('Full-band Reccurent Network', help = 'https://arxiv.org/abs/2211.04071')
authors_c = st.container()
authors_c.write('Авторы модели: Viet-Anh Nguyen and Anh H. T. Nguyen and Andy W. H. Khong')
st.link_button("Github авторов", "https://github.com/Crystalsound/FRN", help = 'Кликни на меня')
description_c = st.container()
description_c.write("Это дополненный space оригинальной FRN модели. К исходной сети были применены методы квантования onnxruntime для уменьшения размера .onnx файла и повышения скорости обработки аудио при некотором ухудшении результата. В этом space вы можете сгенерировать потери пакетов и оценить работу модели визуально, на слух, и по нескольким метрикам.")
st.header("Packet Loss Concealment", help = 'https://arxiv.org/abs/2204.05222')
PLC_c = st.container()
PLC_c.write("PLC (Packet Loss Concealment) - это технологии, созданные для борьбы с потерей пакетов при передаче речи в IP сети. Для ознакомления с данной темой рекомендуется статья INTERSPEECH 2022 Audio Deep Packet Loss Concealment Challenge с результатами одноимённого конкурса.")
st.header("Метрики")
Metrcs_c = st.container()
Metrcs_c.write("Для оценивания речи были выбраны следующие метрики: PESQ, STOI, PLCMOS разных версий и WER. С каждой из них вы можете ознакомиться, перейдя по ссылке рядом с заголовком.")
st.subheader("PESQ", help = 'https://ieeexplore.ieee.org/document/941023')
st.write('Перцептивная оценка качества речи')
st.subheader("STOI", help = 'https://ieeexplore.ieee.org/document/5495701')
st.write('Индекс объективной кратковременной разборчивости')
st.subheader("PLCMOS", help = 'https://arxiv.org/abs/2305.15127')
PLCMOS_c=st.container()
PLCMOS_c.write("Использованы две версии данной метрики (v1, v2). v1 - это первая версия, разработанная для INTERSPEECH 2022 Audio Deep Packet Loss Concealment Challenge. v2 - улучшенная версия метрики, вышедшая в 2023 году. Особенность - неэталонная метрика, которая выдаёт оценку, опираясь только на аудио с потерями без использования информации о исходном (оригинальном). Поставляется как часть пакета speechmos.")
st.subheader("WAcc", help = 'https://docs.speechmatics.com/tutorials/accuracy-benchmarking')
WAcc_c=st.container()
WAcc_c.write('Первоначально использовалась метрика WER (Word Error Rate). Она выражает долю ошибочно распознанных слов. Я считаю, что для восприятия будет проще обратная ей - WAcc (Word Accuracy), то есть доля слов, которые распознаны верно. Для распознавания используется пакет jiwer')
if st.button('Сгенерировать потери'):
with st.spinner('Ожидайте...'):
start_time = time.time()
output = inference(re_im, session, onnx_model, input_names, output_names)
st.text(str(time.time() - start_time))
st.subheader('3. Визуализация аудио')
fig_1 = visualize(target, lossy_input, output, sr)
fig_2 = waveplot(target, lossy_input, output, sr)
tab1, tab2 = st.tabs(["Частотная область", "Временная область"])
with tab1:
st.header("Частотная область")
st.pyplot(fig_1)
with tab2:
st.header("Временная область")
st.pyplot(fig_2)
#st.success('Сделано!')
sf.write('target.wav', target, sr)
sf.write('lossy.wav', lossy_input, sr)
sf.write('enhanced.wav', output, sr)
st.text('Оригинальное аудио')
st.audio('target.wav')
st.text('Аудио с потерями')
st.audio('lossy.wav')
st.text('Улучшенное аудио')
st.audio('enhanced.wav')
#data_clean, samplerate = torchaudio.load('target.wav')
#data_lossy, samplerate = torchaudio.load('lossy.wav')
#data_enhanced, samplerate = torchaudio.load('enhanced.wav')
#min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
#data_clean = data_clean[:, :min_len]
#data_lossy = data_lossy[:, :min_len]
#data_enhanced = data_enhanced[:, :min_len]
#stoi = STOI(samplerate)
#stoi_orig = round(float(stoi(data_clean, data_clean)),3)
#stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
#stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
#stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
#pesq = PESQ(8000, 'nb')
#data_clean = data_clean.cpu().numpy()
#data_lossy = data_lossy.cpu().numpy()
#data_enhanced = data_enhanced.cpu().numpy()
#if samplerate != 8000:
#data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
#data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
#data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
#pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
#pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
#pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
#psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
#_____________________________________________
data_clean, samplerate = sf.read('target.wav')
data_lossy, samplerate = sf.read('lossy.wav')
data_enhanced, samplerate = sf.read('enhanced.wav')
min_len = min(data_clean.shape[0], data_lossy.shape[0], data_enhanced.shape[0])
data_clean = data_clean[:min_len]
data_lossy = data_lossy[:min_len]
data_enhanced = data_enhanced[:min_len]
stoi_orig = round(stoi(data_clean, data_clean, samplerate, extended=False),5)
stoi_lossy = round(stoi(data_clean, data_lossy , samplerate, extended=False),5)
stoi_enhanced = round(stoi(data_clean, data_enhanced, samplerate, extended=False),5)
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
#def get_power(x, nfft):
# S = librosa.stft(x, n_fft=nfft)
# S = np.log(np.abs(S) ** 2 + 1e-8)
# return S
#def LSD(x_hr, x_pr):
# S1 = get_power(x_hr, nfft=2048)
# S2 = get_power(x_pr, nfft=2048)
# lsd = np.mean(np.sqrt(np.mean((S1 - S2) ** 2, axis=-1)), axis=0)
# return lsd
#lsd_orig = LSD(data_clean,data_clean)
#lsd_lossy = LSD(data_lossy,data_clean)
#lsd_enhanced = LSD(data_enhanced,data_clean)
#lsd_mass=[lsd_orig, lsd_lossy, lsd_enhanced]
if samplerate != 16000:
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
pesq_orig = pesq(fs = 16000, ref = data_clean, deg = data_clean, mode='wb')
pesq_lossy = pesq(fs = 16000, ref = data_clean, deg = data_lossy, mode='wb')
pesq_enhanced = pesq(fs = 16000, ref = data_clean, deg = data_enhanced, mode='wb')
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
data_clean, fs = sf.read('target.wav')
data_lossy, fs = sf.read('lossy.wav')
data_enhanced, fs = sf.read('enhanced.wav')
if fs!= 16000:
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
PLC_example=PLCMOSEstimator()
PLC_org = PLC_example.run(audio_degraded=data_clean, audio_clean=data_clean)[0]
PLC_lossy = PLC_example.run(audio_degraded=data_lossy, audio_clean=data_clean)[0]
PLC_enhanced = PLC_example.run(audio_degraded=data_enhanced, audio_clean=data_clean)[0]
PLC_massv1 = [PLC_org, PLC_lossy, PLC_enhanced]
df_1 = pd.DataFrame(columns=['Audio', 'PESQ', 'STOI', 'PLCMOSv1'])
df_1['Аудио'] = ['Оригинал', 'С потерями', 'Улучшенное']
df_1['PESQ'] = psq_mas
df_1['STOI'] = stoi_mass
#df['LSD'] = lsd_mass
df_1['PLCMOSv1'] = PLC_massv1
#new_columns = pd.MultiIndex.from_tuples([('', 'Audio'), ('Эталонные метрики', 'PESQ'), ('Эталонные метрики', 'STOI'), ('Эталонные метрики', 'PLCMOSv1')])
# Присваиваем новый мультииндекс столбцам
#df_1.columns = new_columns
PLC_massv2 = [plcmos.run("target.wav", sr=16000)['plcmos'], plcmos.run("lossy.wav", sr=16000)['plcmos'], plcmos.run("enhanced.wav", sr=16000)['plcmos']]
#DNS = [dnsmos.run("target.wav", sr=16000)['ovrl_mos'], dnsmos.run("lossy.wav", sr=16000)['ovrl_mos'], dnsmos.run("enhanced.wav", sr=16000)['ovrl_mos']]
df_1['PLCMOSv2'] = PLC_massv2
#df_1['DNSMOS'] = DNS
#df_2 = pd.DataFrame(columns=['DNSMOS', 'PLCMOSv2'])
#df_2['DNSMOS'] = DNS
#df_2['PLCMOSv2'] = PLC_massv2
#new_columns = pd.MultiIndex.from_tuples([('Неэталонные метрики', 'DNSMOS'), ('Неэталонные метрики', 'PLCMOSv2')])
# Присваиваем новый мультииндекс столбцам
#df_2.columns = new_columns
#df_merged = df_1.merge(df_2, left_index=True, right_index=True)
r = speech_r.Recognizer()
harvard = speech_r.AudioFile('target.wav')
with harvard as source:
audio = r.record(source)
orig = r.recognize_google(audio, language = str(lang))
harvard = speech_r.AudioFile('lossy.wav')
#with harvard as source:
# audio = r.record(source)
#lossy = r.recognize_google(audio, language = "ru-RU")
try:
with harvard as source:
audio = r.record(source)
lossy = r.recognize_google(audio, language = str(lang))
#print("Распознанный текст:", text)
except speech_r.UnknownValueError:
#st.text("Система не смогла распознать аудио")
lossy = ''
#except speech_r.RequestError as e:
#st.text("Ошибка при запросе к сервису распознавания речи; {0}".format(e))
harvard = speech_r.AudioFile('enhanced.wav')
#with harvard as source:
# audio = r.record(source)
#enhanced = r.recognize_google(audio, language = "ru-RU")
try:
with harvard as source:
audio = r.record(source)
enhanced = r.recognize_google(audio, language = str(lang))
#print("Распознанный текст:", text)
except speech_r.UnknownValueError:
#st.text("Система не смогла распознать улучшенное аудио")
enhanced = ''
#except speech_r.RequestError as e:
#st.text("Ошибка при запросе к сервису распознавания речи; {0}".format(e))
error1 = wer(orig, orig)
error2 = wer(orig, lossy)
error3 = wer(orig, enhanced)
WAcc_mass=[(1-error1)*100, (1-error2)*100, (1-error3)*100]
df_1['WAcc'] = WAcc_mass
st.subheader('4. Метрики аудио')
#st.dataframe(df_1)
st.write("#### "+"Оригинал")
col1, col2, col3, col4, col5 = st.columns(5)
col1.metric("PESQ", value = round(psq_mas[0],3))
col2.metric("STOI", value = round(stoi_mass[0],3))
col3.metric("PLCMOSv1", value = round(PLC_massv1[0],3))
col4.metric("PLCMOSv2", value = round(PLC_massv2[0],3))
col5.metric("WAcc", value = round(WAcc_mass[0],3))
st.write("#### "+"С потерями")
col1, col2, col3, col4, col5 = st.columns(5)
col1.metric("PESQ", value = round(psq_mas[1],3), delta = str(round(-(abs(psq_mas[1] - psq_mas[0]) / psq_mas[0]) * 100.0,3))+'%')
col2.metric("STOI", value = round(stoi_mass[1],3), delta = str(round(-(abs(stoi_mass[1] - stoi_mass[0]) / stoi_mass[0]) * 100.0,3))+'%')
col3.metric("PLCMOSv1", value = round(PLC_massv1[1],3), delta = str(round(-(abs(PLC_massv1[1] - PLC_massv1[0]) / PLC_massv1[0]) * 100.0,3))+'%')
col4.metric("PLCMOSv2", value = round(PLC_massv2[1],3), delta = str(round(-(abs(PLC_massv2[1] - PLC_massv2[0]) / PLC_massv2[0]) * 100.0,3))+'%')
col5.metric("WAcc", value = round(WAcc_mass[1],3), delta = str(round(-(abs(WAcc_mass[1] - WAcc_mass[0]) / WAcc_mass[0]) * 100.0,3))+'%')
st.write("#### "+"Улучшенное")
col1, col2, col3, col4, col5 = st.columns(5)
PESQ_s = sign_x_y(psq_mas[1], psq_mas[2])
col1.metric("PESQ", value = round(psq_mas[2],3), delta = PESQ_s + str(round((abs(psq_mas[2] - psq_mas[1]) / psq_mas[1]) * 100.0,3))+'%')
STOI_s = sign_x_y(stoi_mass[1], stoi_mass[2])
col2.metric("STOI", value = round(stoi_mass[2],3), delta = STOI_s + str(round((abs(stoi_mass[2] - stoi_mass[1]) / stoi_mass[1]) * 100.0,3))+'%')
PLCv1_s = sign_x_y(PLC_massv1[1], PLC_massv1[2])
col3.metric("PLCMOSv1", value = round(PLC_massv1[2],3), delta = PLCv1_s + str(round((abs(PLC_massv1[2] - PLC_massv1[1]) / PLC_massv1[1]) * 100.0,3))+'%')
PLCv2_s = sign_x_y(PLC_massv2[1], PLC_massv2[2])
col4.metric("PLCMOSv2", value = round(PLC_massv2[2],3), delta = PLCv2_s + str(round((abs(PLC_massv2[2] - PLC_massv2[1]) / PLC_massv2[1]) * 100.0,3))+'%')
WER_s = sign_x_y(WAcc_mass[1], WAcc_mass[2])
if WAcc_mass[1]==0:
if WAcc_mass[2]!=0:
col5.metric("WAcc", value = round(WAcc_mass[2],3), delta = WER_s + str(round((abs(WAcc_mass[2] - 0.001) / 0.001) * 100.0,3))+'%')
else:
col5.metric("WAcc", value = round(WAcc_mass[2],3))
else:
col5.metric("WAcc", value = round(WAcc_mass[2],3), delta = WER_s + str(round((abs(WAcc_mass[2] - WAcc_mass[1]) / WAcc_mass[1]) * 100.0,3))+'%')
tab1, tab2, tab3, tab4, tab5 = st.tabs(["PESQ", "STOI", "PLCMOSv1", "PLCMOSv2", "WAcc"])
with tab1:
st.header("PESQ")
st.bar_chart(df_1, x="Аудио", y="PESQ")
with tab2:
st.header("STOI")
st.bar_chart(df_1, x="Аудио", y="STOI")
with tab3:
st.header("PLCMOSv1")
st.bar_chart(df_1, x="Аудио", y="PLCMOSv1")
with tab4:
st.header("PLCMOSv2")
st.bar_chart(df_1, x="Аудио", y="PLCMOSv2")
with tab5:
st.header("WAcc")
st.bar_chart(df_1, x="Аудио", y="WAcc")
#st.bar_chart(df_1, x="Audio", y="PESQ")
#st.bar_chart(df_1, x="Audio", y="STOI")
#st.bar_chart(df_1, x="Audio", y="PLCMOSv1")
#st.bar_chart(df_1, x="Audio", y="PLCMOSv2")
#st.bar_chart(df_1, x="Audio", y="WER")
#col1.metric("PESQ", value = psq_mas[-1], delta = psq_mas[-1] - psq_mas[-2])
#col2.metric("STOI", value = stoi_mass[-1], delta = stoi_mass[-1] - stoi_mass[-2])
#col3.metric("PLCMOSv1", value = PLC_massv1[-1], delta = PLC_massv1[-1] - PLC_massv1[-2])
#col4.metric("PLCMOSv2", value = PLC_massv2[-1], delta = PLC_massv2[-1] - PLC_massv2[-2])
#col5.metric("WER", value = WER_mass[-1], delta = WER_mass[-1] - WER_mass[-2], delta_color="inverse")
|