XDHDD commited on
Commit
035cc4c
1 Parent(s): 04382af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -1
app.py CHANGED
@@ -16,6 +16,10 @@ import pandas as pd
16
  import torchaudio
17
 
18
 
 
 
 
 
19
 
20
  @st.cache
21
  def load_model():
@@ -128,7 +132,52 @@ if st.button('Сгенерировать потери'):
128
  st.text('Улучшенное аудио')
129
  st.audio('enhanced.wav')
130
 
131
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  data_clean, samplerate = sf.read('target.wav')
133
  data_lossy, samplerate = sf.read('lossy.wav')
134
  data_enhanced, samplerate = sf.read('enhanced.wav')
 
16
  import torchaudio
17
 
18
 
19
+ from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
20
+ from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
21
+
22
+
23
 
24
  @st.cache
25
  def load_model():
 
132
  st.text('Улучшенное аудио')
133
  st.audio('enhanced.wav')
134
 
135
+
136
+
137
+
138
+
139
+
140
+ data_clean, samplerate = torchaudio.load('/content/Катя_базу_выдала.wav')
141
+ data_lossy, samplerate = torchaudio.load('/content/Катя_базу_выдала_40%.wav')
142
+ data_enhanced, samplerate = torchaudio.load('/content/Катя_базу_выдала_демо.wav')
143
+
144
+ min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
145
+ data_clean = data_clean[:, :min_len]
146
+ data_lossy = data_lossy[:, :min_len]
147
+ data_enhanced = data_enhanced[:, :min_len]
148
+
149
+
150
+ stoi = STOI(samplerate)
151
+
152
+ stoi_orig = round(float(stoi(data_clean, data_clean)),3)
153
+ stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
154
+ stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
155
+
156
+ stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
157
+
158
+
159
+ pesq = PESQ(16000, 'nb')
160
+
161
+ data_clean = data_clean.cpu().numpy()
162
+ data_lossy = data_lossy.cpu().numpy()
163
+ data_enhanced = data_enhanced.cpu().numpy()
164
+
165
+ if samplerate != 16000:
166
+ data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
167
+ data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
168
+ data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
169
+
170
+ pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
171
+ pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
172
+ pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
173
+
174
+ psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
175
+
176
+
177
+
178
+
179
+
180
+ #_____________________________________________
181
  data_clean, samplerate = sf.read('target.wav')
182
  data_lossy, samplerate = sf.read('lossy.wav')
183
  data_enhanced, samplerate = sf.read('enhanced.wav')