Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,10 @@ import pandas as pd
|
|
16 |
import torchaudio
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
@st.cache
|
21 |
def load_model():
|
@@ -128,7 +132,52 @@ if st.button('Сгенерировать потери'):
|
|
128 |
st.text('Улучшенное аудио')
|
129 |
st.audio('enhanced.wav')
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
data_clean, samplerate = sf.read('target.wav')
|
133 |
data_lossy, samplerate = sf.read('lossy.wav')
|
134 |
data_enhanced, samplerate = sf.read('enhanced.wav')
|
|
|
16 |
import torchaudio
|
17 |
|
18 |
|
19 |
+
from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
|
20 |
+
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
|
21 |
+
|
22 |
+
|
23 |
|
24 |
@st.cache
|
25 |
def load_model():
|
|
|
132 |
st.text('Улучшенное аудио')
|
133 |
st.audio('enhanced.wav')
|
134 |
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
data_clean, samplerate = torchaudio.load('/content/Катя_базу_выдала.wav')
|
141 |
+
data_lossy, samplerate = torchaudio.load('/content/Катя_базу_выдала_40%.wav')
|
142 |
+
data_enhanced, samplerate = torchaudio.load('/content/Катя_базу_выдала_демо.wav')
|
143 |
+
|
144 |
+
min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
|
145 |
+
data_clean = data_clean[:, :min_len]
|
146 |
+
data_lossy = data_lossy[:, :min_len]
|
147 |
+
data_enhanced = data_enhanced[:, :min_len]
|
148 |
+
|
149 |
+
|
150 |
+
stoi = STOI(samplerate)
|
151 |
+
|
152 |
+
stoi_orig = round(float(stoi(data_clean, data_clean)),3)
|
153 |
+
stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
|
154 |
+
stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
|
155 |
+
|
156 |
+
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
157 |
+
|
158 |
+
|
159 |
+
pesq = PESQ(16000, 'nb')
|
160 |
+
|
161 |
+
data_clean = data_clean.cpu().numpy()
|
162 |
+
data_lossy = data_lossy.cpu().numpy()
|
163 |
+
data_enhanced = data_enhanced.cpu().numpy()
|
164 |
+
|
165 |
+
if samplerate != 16000:
|
166 |
+
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
|
167 |
+
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
|
168 |
+
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
|
169 |
+
|
170 |
+
pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
171 |
+
pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
172 |
+
pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
173 |
+
|
174 |
+
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
#_____________________________________________
|
181 |
data_clean, samplerate = sf.read('target.wav')
|
182 |
data_lossy, samplerate = sf.read('lossy.wav')
|
183 |
data_enhanced, samplerate = sf.read('enhanced.wav')
|