File size: 13,276 Bytes
a886fec
cbdb77e
06bba7e
ff2e0a9
a886fec
 
 
 
cd542fa
 
a886fec
 
 
cd542fa
471a386
06bba7e
 
53625b9
a886fec
53625b9
a886fec
 
53625b9
 
cbdb77e
 
 
 
 
53625b9
 
a886fec
 
cbdb77e
e99e78e
a886fec
 
 
 
e99e78e
 
 
 
a886fec
 
06bba7e
a886fec
 
 
cbdb77e
a886fec
 
 
31070ee
 
 
53625b9
31070ee
 
a886fec
53625b9
cd542fa
53625b9
cd542fa
53625b9
cd542fa
a886fec
cd542fa
 
 
a886fec
 
 
53625b9
 
31070ee
 
 
 
 
22e326e
31070ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e628f3f
31070ee
 
e628f3f
31070ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a886fec
22e326e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba37554
22e326e
 
 
 
 
 
 
 
e628f3f
31070ee
a886fec
 
 
cd542fa
 
31070ee
 
cd542fa
 
 
 
 
 
e628f3f
31070ee
a886fec
 
 
cd542fa
 
31070ee
cd542fa
 
 
 
 
31070ee
cd542fa
 
 
 
cbdb77e
 
cd542fa
 
 
 
 
cbdb77e
 
cd542fa
 
 
cbdb77e
31070ee
a886fec
 
 
e628f3f
a886fec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f9a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a886fec
 
cd542fa
7c9515a
22e326e
b9f9a14
22e326e
cd542fa
 
31070ee
22e326e
31070ee
cd542fa
 
b9f9a14
cd542fa
22e326e
 
 
 
 
 
 
 
a886fec
 
31070ee
cd542fa
7c9515a
31070ee
b9f9a14
cd542fa
31070ee
22e326e
31070ee
 
 
 
 
22e326e
 
 
 
 
 
 
b9f9a14
22e326e
a886fec
 
cd542fa
7c9515a
cd542fa
b9f9a14
31070ee
cd542fa
 
 
 
 
 
b9f9a14
cd542fa
31070ee
 
a886fec
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import sys
import threading
import streamlit as st
from huggingface_hub import HfFolder, snapshot_download


@st.cache_data
def load_support():
    if st.secrets.has_key('etoken'):
        HfFolder().save_token(st.secrets['etoken'])
    sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))


# st.set_page_config(layout='wide')
load_support()


import numpy
import torch
import openshape
import transformers
from PIL import Image

@st.cache_resource
def load_openshape(name, to_cpu=False):
    pce = openshape.load_pc_encoder(name)
    if to_cpu:
        pce = pce.cpu()
    return pce


@st.cache_resource
def load_openclip():
    sys.clip_move_lock = threading.Lock()
    clip_model, clip_prep = transformers.CLIPModel.from_pretrained(
        "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
        low_cpu_mem_usage=True, torch_dtype=half,
        offload_state_dict=True
    ), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
    if torch.cuda.is_available():
        with sys.clip_move_lock:
            clip_model.cuda()
    return clip_model, clip_prep


f32 = numpy.float32
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
# clip_model, clip_prep = None, None
clip_model, clip_prep = load_openclip()
model_b32 = load_openshape('openshape-pointbert-vitb32-rgb', True)
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
torch.set_grad_enabled(False)
for kc, vc in st.session_state.get('state_queue', []):
    st.session_state[kc] = vc
st.session_state.state_queue = []


import samples_index
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval


st.title("OpenShape Demo")
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
prog = st.progress(0.0, "Idle")
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
    "Classification",
    "Retrieval w/ Image",
    "Retrieval w/ Text",
    "Retrieval w/ 3D",
    "Image Generation",
    "Captioning",
])


def sq(kc, vc):
    st.session_state.state_queue.append((kc, vc))


def reset_3d_shape_input(key):
    # this is not working due to streamlit problems, don't use it
    model_key = key + "_model"
    npy_key = key + "_npy"
    swap_key = key + "_swap"
    sq(model_key, None)
    sq(npy_key, None)
    sq(swap_key, "Y is up (for most Objaverse shapes)")


def auto_submit(key):
    if st.session_state.get(key):
        st.session_state[key] = False
        return True
    return False


def queue_auto_submit(key):
    st.session_state[key] = True
    st.experimental_rerun()


img_example_counter = 0


def image_examples(samples, ncols, return_key=None, example_text="Examples"):
    global img_example_counter
    trigger = False
    with st.expander(example_text, True):
        for i in range(len(samples) // ncols):
            cols = st.columns(ncols)
            for j in range(ncols):
                idx = i * ncols + j
                if idx >= len(samples):
                    continue
                entry = samples[idx]
                with cols[j]:
                    st.image(entry['dispi'])
                    img_example_counter += 1
                    with st.columns(5)[2]:
                        this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
                    trigger = trigger or this_trigger
                    if this_trigger:
                        if return_key is None:
                            for k, v in entry.items():
                                if not k.startswith('disp'):
                                    sq(k, v)
                        else:
                            trigger = entry[return_key]
    return trigger


def demo_classification():
    with st.form("clsform"):
        load_data = misc_utils.input_3d_shape('cls')
        cats = st.text_input("Custom Categories (64 max, separated with comma)")
        cats = [a.strip() for a in cats.split(',')]
        if len(cats) > 64:
            st.error('Maximum 64 custom categories supported in the demo')
            return
        lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
        custom_run = st.form_submit_button("Run Classification on Custom Categories")
        if lvis_run or auto_submit("clsauto"):
            pc = load_data(prog)
            col2 = misc_utils.render_pc(pc)
            prog.progress(0.5, "Running Classification")
            pred = classification.pred_lvis_sims(model_g14, pc)
            with col2:
                for i, (cat, sim) in zip(range(5), pred.items()):
                    st.text(cat)
                    st.caption("Similarity %.4f" % sim)
            prog.progress(1.0, "Idle")
        if custom_run:
            pc = load_data(prog)
            col2 = misc_utils.render_pc(pc)
            prog.progress(0.5, "Computing Category Embeddings")
            device = clip_model.device
            tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
            feats = clip_model.get_text_features(**tn).float().cpu()
            prog.progress(0.5, "Running Classification")
            pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
            with col2:
                for i, (cat, sim) in zip(range(5), pred.items()):
                    st.text(cat)
                    st.caption("Similarity %.4f" % sim)
            prog.progress(1.0, "Idle")
    if image_examples(samples_index.classification, 3, example_text="Examples (Choose one of the following 3D shapes)"):
        queue_auto_submit("clsauto")


def demo_captioning():
    with st.form("capform"):
        load_data = misc_utils.input_3d_shape('cap')
        cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
        if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
            pc = load_data(prog)
            col2 = misc_utils.render_pc(pc)
            prog.progress(0.5, "Running Generation")
            cap = caption.pc_caption(model_b32, pc, cond_scale)
            st.text(cap)
            prog.progress(1.0, "Idle")
    if image_examples(samples_index.cap, 3, example_text="Examples (Choose one of the following 3D shapes)"):
        queue_auto_submit("capauto")


def demo_pc2img():
    with st.form("sdform"):
        load_data = misc_utils.input_3d_shape('sd')
        prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
        noise_scale = st.slider('Variation Level', 0, 5, 1)
        cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
        steps = st.slider('Diffusion Steps', 8, 50, 25)
        width = 640  # st.slider('Width', 480, 640, step=32)
        height = 640  # st.slider('Height', 480, 640, step=32)
        if st.form_submit_button("Generate") or auto_submit("sdauto"):
            pc = load_data(prog)
            col2 = misc_utils.render_pc(pc)
            prog.progress(0.49, "Running Generation")
            if torch.cuda.is_available():
                with sys.clip_move_lock:
                    clip_model.cpu()
            img = sd_pc2img.pc_to_image(
                model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
                lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
            )
            if torch.cuda.is_available():
                with sys.clip_move_lock:
                    clip_model.cuda()
            with col2:
                st.image(img)
            prog.progress(1.0, "Idle")
    if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
        queue_auto_submit("sdauto")


def retrieval_results(results):
    st.caption("Click the link to view the 3D shape")
    for i in range(len(results) // 4):
        cols = st.columns(4)
        for j in range(4):
            idx = i * 4 + j
            if idx >= len(results):
                continue
            entry = results[idx]
            with cols[j]:
                ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
                st.image(entry['img'])
                # st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
                # st.text(entry['name'])
                quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
                st.markdown(f"[{quote_name}]({ext_link})")


def retrieval_filter_expand(key):
    with st.expander("Filters"):
        sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
        tag = st.text_input("Has Tag", "", key=key + 'rthastag')
        col1, col2 = st.columns(2)
        face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
        face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
        col1, col2 = st.columns(2)
        anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
        anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
        tag_n = not bool(tag.strip())
        anim_n = not (anim_min > 0 or anim_max < 563)
        face_n = not (face_min > 0 or face_max < 34985808)
        filter_fn = lambda x: (
            (anim_n or anim_min <= x['anims'] <= anim_max)
            and (face_n or face_min <= x['faces'] <= face_max)
            and (tag_n or tag in x['tags'])
        )
        return sim_th, filter_fn


def demo_retrieval():
    with tab_text:
        with st.form("rtextform"):
            k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
            text = st.text_input("Input Text", key="inputrtext")
            sim_th, filter_fn = retrieval_filter_expand('text')
            if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
                prog.progress(0.49, "Computing Embeddings")
                device = clip_model.device
                tn = clip_prep(
                    text=[text], return_tensors='pt', truncation=True, max_length=76
                ).to(device)
                enc = clip_model.get_text_features(**tn).float().cpu()
                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                prog.progress(1.0, "Idle")
        picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
        text_last_example = st.session_state.get('text_last_example', None)
        if text_last_example is None:
            st.session_state.text_last_example = picked_sample
        elif text_last_example != picked_sample and picked_sample != "Select...":
            st.session_state.text_last_example = picked_sample
            sq("inputrtext", picked_sample)
            queue_auto_submit("rtextauto")

    with tab_img:
        submit = False
        with st.form("rimgform"):
            k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
            pic = st.file_uploader("Upload an Image", key='rimageinput')
            sim_th, filter_fn = retrieval_filter_expand('image')
            if st.form_submit_button("Run with Image"):
                submit = True
            results_container = st.container()
        sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
        if sample_got:
            pic = sample_got
        if sample_got or submit:
            img = Image.open(pic)
            with results_container:
                st.image(img)
                prog.progress(0.49, "Computing Embeddings")
                device = clip_model.device
                tn = clip_prep(images=[img], return_tensors="pt").to(device)
                enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                prog.progress(1.0, "Idle")

    with tab_pc:
        with st.form("rpcform"):
            k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
            load_data = misc_utils.input_3d_shape('retpc')
            sim_th, filter_fn = retrieval_filter_expand('pc')
            if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
                pc = load_data(prog)
                col2 = misc_utils.render_pc(pc)
                prog.progress(0.49, "Computing Embeddings")
                ref_dev = next(model_g14.parameters()).device
                enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
                prog.progress(0.7, "Running Retrieval")
                retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
                prog.progress(1.0, "Idle")
        if image_examples(samples_index.pret, 3):
            queue_auto_submit("rpcauto")


try:
    with tab_cls:
        demo_classification()
    with tab_cap:
        demo_captioning()
    with tab_sd:
        demo_pc2img()
    demo_retrieval()
except Exception:
    import traceback
    st.error(traceback.format_exc().replace("\n", "  \n"))