Spaces:
Sleeping
Sleeping
eliphatfs
commited on
Commit
·
06bba7e
1
Parent(s):
ce41dc5
Token.
Browse files- app.py +52 -45
- openshape/__init__.py +1 -1
- openshape/caption.py +1 -1
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy
|
2 |
import trimesh
|
3 |
import objaverse
|
4 |
import openshape
|
5 |
import misc_utils
|
6 |
-
import streamlit as st
|
7 |
import plotly.graph_objects as go
|
8 |
|
9 |
|
@@ -12,7 +16,7 @@ def load_openshape(name):
|
|
12 |
return openshape.load_pc_encoder(name)
|
13 |
|
14 |
|
15 |
-
f32 = numpy.
|
16 |
model_b32 = openshape.load_pc_encoder('openshape-pointbert-vitb32-rgb')
|
17 |
model_l14 = openshape.load_pc_encoder('openshape-pointbert-vitl14-rgb')
|
18 |
model_g14 = openshape.load_pc_encoder('openshape-pointbert-vitg14-rgb')
|
@@ -68,46 +72,49 @@ def render_pc(ncols, col, pc):
|
|
68 |
return cols
|
69 |
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import HfFolder
|
3 |
+
HfFolder().save_token(st.secrets['etoken'])
|
4 |
+
|
5 |
+
|
6 |
import numpy
|
7 |
import trimesh
|
8 |
import objaverse
|
9 |
import openshape
|
10 |
import misc_utils
|
|
|
11 |
import plotly.graph_objects as go
|
12 |
|
13 |
|
|
|
16 |
return openshape.load_pc_encoder(name)
|
17 |
|
18 |
|
19 |
+
f32 = numpy.float32
|
20 |
model_b32 = openshape.load_pc_encoder('openshape-pointbert-vitb32-rgb')
|
21 |
model_l14 = openshape.load_pc_encoder('openshape-pointbert-vitl14-rgb')
|
22 |
model_g14 = openshape.load_pc_encoder('openshape-pointbert-vitg14-rgb')
|
|
|
72 |
return cols
|
73 |
|
74 |
|
75 |
+
try:
|
76 |
+
tab_cls, tab_pc2img, tab_cap = st.tabs(["Classification", "Point Cloud to Image Generation", "Point Cloud Captioning"])
|
77 |
+
|
78 |
+
with tab_cls:
|
79 |
+
if st.button("Run Classification on LVIS Categories"):
|
80 |
+
pc = load_data()
|
81 |
+
col1, col2 = render_pc(2, 0, pc)
|
82 |
+
prog.progress(0.5, "Running Classification")
|
83 |
+
with col2:
|
84 |
+
pred = openshape.pred_lvis_sims(model_g14, pc)
|
85 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
86 |
+
st.text(cat)
|
87 |
+
st.caption("Similarity %.4f" % sim)
|
88 |
+
prog.progress(1.0, "Idle")
|
89 |
+
|
90 |
+
with tab_pc2img:
|
91 |
+
prompt = st.text_input("Prompt")
|
92 |
+
noise_scale = st.slider('Variation Level', 0, 5)
|
93 |
+
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
94 |
+
steps = st.slider('Diffusion Steps', 2, 80, 10)
|
95 |
+
width = st.slider('Width', 128, 512, step=32)
|
96 |
+
height = st.slider('Height', 128, 512, step=32)
|
97 |
+
if st.button("Generate"):
|
98 |
+
pc = load_data()
|
99 |
+
col1, col2 = render_pc(2, 0, pc)
|
100 |
+
prog.progress(0.49, "Running Generation")
|
101 |
+
img = openshape.pc_to_image(
|
102 |
+
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
103 |
+
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
104 |
+
)
|
105 |
+
with col2:
|
106 |
+
st.image(img)
|
107 |
+
prog.progress(1.0, "Idle")
|
108 |
+
|
109 |
+
with tab_cap:
|
110 |
+
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 1.0)
|
111 |
+
if st.button("Generate a Caption"):
|
112 |
+
pc = load_data()
|
113 |
+
col1, col2 = render_pc(2, 0, pc)
|
114 |
+
prog.progress(0.5, "Running Generation")
|
115 |
+
cap = openshape.pc_caption(model_b32, pc, cond_scale)
|
116 |
+
with col2:
|
117 |
+
st.text(cap)
|
118 |
+
prog.progress(1.0, "Idle")
|
119 |
+
except Exception as exc:
|
120 |
+
st.error(repr(exc))
|
openshape/__init__.py
CHANGED
@@ -40,7 +40,7 @@ model_list = {
|
|
40 |
|
41 |
|
42 |
def load_pc_encoder(name):
|
43 |
-
s = torch.load(hf_hub_download("OpenShape/" + name, "model.pt"), map_location='cpu')
|
44 |
model = model_list[name](s).eval()
|
45 |
if torch.cuda.is_available():
|
46 |
model.cuda()
|
|
|
40 |
|
41 |
|
42 |
def load_pc_encoder(name):
|
43 |
+
s = torch.load(hf_hub_download("OpenShape/" + name, "model.pt", token=True), map_location='cpu')
|
44 |
model = model_list[name](s).eval()
|
45 |
if torch.cuda.is_available():
|
46 |
model.cuda()
|
openshape/caption.py
CHANGED
@@ -157,7 +157,7 @@ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
157 |
prefix_length = 10
|
158 |
model = ClipCaptionModel(prefix_length)
|
159 |
# print(model.gpt_embedding_size)
|
160 |
-
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt'), map_location='cpu'))
|
161 |
model.eval()
|
162 |
if torch.cuda.is_available():
|
163 |
model = model.cuda()
|
|
|
157 |
prefix_length = 10
|
158 |
model = ClipCaptionModel(prefix_length)
|
159 |
# print(model.gpt_embedding_size)
|
160 |
+
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt', token=True), map_location='cpu'))
|
161 |
model.eval()
|
162 |
if torch.cuda.is_available():
|
163 |
model = model.cuda()
|