Spaces:
Sleeping
Sleeping
eliphatfs
commited on
Commit
·
31070ee
1
Parent(s):
3fbe09c
Examples.
Browse files- .gitignore +1 -0
- app.py +100 -17
- samples/retrieval-img/img4.jpg +0 -0
- samples/retrieval-img/img6.jpg +0 -0
- samples/retrieval-img/img7.jpg +0 -0
- samples/retrieval-img/img8.jpg +0 -0
- samples/retrieval-img/img9.jpg +0 -0
- samples/retrieval-text.txt +0 -16
- samples/sd-text.txt +0 -3
- samples_index.py +61 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
CHANGED
@@ -42,7 +42,12 @@ model_b32 = load_openshape('openshape-pointbert-vitb32-rgb').cpu()
|
|
42 |
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
|
43 |
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
|
44 |
torch.set_grad_enabled(False)
|
|
|
|
|
|
|
45 |
|
|
|
|
|
46 |
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
47 |
|
48 |
|
@@ -59,6 +64,67 @@ tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
|
59 |
])
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def demo_classification():
|
63 |
load_data = misc_utils.input_3d_shape('cls')
|
64 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
@@ -68,7 +134,7 @@ def demo_classification():
|
|
68 |
return
|
69 |
lvis_run = st.button("Run Classification on LVIS Categories")
|
70 |
custom_run = st.button("Run Classification on Custom Categories")
|
71 |
-
if lvis_run:
|
72 |
pc = load_data(prog)
|
73 |
col2 = misc_utils.render_pc(pc)
|
74 |
prog.progress(0.5, "Running Classification")
|
@@ -92,31 +158,35 @@ def demo_classification():
|
|
92 |
st.text(cat)
|
93 |
st.caption("Similarity %.4f" % sim)
|
94 |
prog.progress(1.0, "Idle")
|
|
|
|
|
95 |
|
96 |
|
97 |
def demo_captioning():
|
98 |
with st.form("capform"):
|
99 |
load_data = misc_utils.input_3d_shape('cap')
|
100 |
-
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0)
|
101 |
-
if st.form_submit_button("Generate a Caption"):
|
102 |
pc = load_data(prog)
|
103 |
col2 = misc_utils.render_pc(pc)
|
104 |
prog.progress(0.5, "Running Generation")
|
105 |
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
106 |
st.text(cap)
|
107 |
prog.progress(1.0, "Idle")
|
|
|
|
|
108 |
|
109 |
|
110 |
def demo_pc2img():
|
111 |
with st.form("sdform"):
|
112 |
load_data = misc_utils.input_3d_shape('sd')
|
113 |
-
prompt = st.text_input("Prompt (Optional)")
|
114 |
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
115 |
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
116 |
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
117 |
width = 640 # st.slider('Width', 480, 640, step=32)
|
118 |
height = 640 # st.slider('Height', 480, 640, step=32)
|
119 |
-
if st.form_submit_button("Generate"):
|
120 |
pc = load_data(prog)
|
121 |
col2 = misc_utils.render_pc(pc)
|
122 |
prog.progress(0.49, "Running Generation")
|
@@ -131,6 +201,8 @@ def demo_pc2img():
|
|
131 |
with col2:
|
132 |
st.image(img)
|
133 |
prog.progress(1.0, "Idle")
|
|
|
|
|
134 |
|
135 |
|
136 |
def retrieval_results(results):
|
@@ -155,35 +227,44 @@ def demo_retrieval():
|
|
155 |
with st.form("rtextform"):
|
156 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rtext')
|
157 |
text = st.text_input("Input Text")
|
|
|
158 |
if st.form_submit_button("Run with Text"):
|
159 |
prog.progress(0.49, "Computing Embeddings")
|
160 |
device = clip_model.device
|
161 |
-
tn = clip_prep(
|
|
|
|
|
162 |
enc = clip_model.get_text_features(**tn).float().cpu()
|
163 |
prog.progress(0.7, "Running Retrieval")
|
164 |
retrieval_results(retrieval.retrieve(enc, k))
|
165 |
prog.progress(1.0, "Idle")
|
166 |
|
167 |
with tab_img:
|
|
|
168 |
with st.form("rimgform"):
|
169 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rimage')
|
170 |
-
pic = st.file_uploader("Upload an Image")
|
171 |
if st.form_submit_button("Run with Image"):
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
with tab_pc:
|
183 |
with st.form("rpcform"):
|
184 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rpc')
|
185 |
load_data = misc_utils.input_3d_shape('retpc')
|
186 |
-
if st.form_submit_button("Run with Shape"):
|
187 |
pc = load_data(prog)
|
188 |
col2 = misc_utils.render_pc(pc)
|
189 |
prog.progress(0.49, "Computing Embeddings")
|
@@ -192,6 +273,8 @@ def demo_retrieval():
|
|
192 |
prog.progress(0.7, "Running Retrieval")
|
193 |
retrieval_results(retrieval.retrieve(enc, k))
|
194 |
prog.progress(1.0, "Idle")
|
|
|
|
|
195 |
|
196 |
|
197 |
try:
|
|
|
42 |
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
|
43 |
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
|
44 |
torch.set_grad_enabled(False)
|
45 |
+
for kc, vc in st.session_state.get('state_queue', []):
|
46 |
+
st.session_state[kc] = vc
|
47 |
+
st.session_state.state_queue = []
|
48 |
|
49 |
+
|
50 |
+
import samples_index
|
51 |
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
52 |
|
53 |
|
|
|
64 |
])
|
65 |
|
66 |
|
67 |
+
def sq(kc, vc):
|
68 |
+
st.session_state.state_queue.append((kc, vc))
|
69 |
+
|
70 |
+
|
71 |
+
def reset_3d_shape_input(key):
|
72 |
+
objaid_key = key + "_objaid"
|
73 |
+
model_key = key + "_model"
|
74 |
+
npy_key = key + "_npy"
|
75 |
+
swap_key = key + "_swap"
|
76 |
+
sq(objaid_key, "")
|
77 |
+
sq(model_key, None)
|
78 |
+
sq(npy_key, None)
|
79 |
+
sq(swap_key, "Y is up (for most Objaverse shapes)")
|
80 |
+
|
81 |
+
|
82 |
+
def auto_submit(key):
|
83 |
+
if st.session_state.get(key):
|
84 |
+
st.session_state[key] = False
|
85 |
+
return True
|
86 |
+
return False
|
87 |
+
|
88 |
+
|
89 |
+
def queue_auto_submit(key):
|
90 |
+
st.session_state[key] = True
|
91 |
+
st.experimental_rerun()
|
92 |
+
|
93 |
+
|
94 |
+
img_example_counter = 0
|
95 |
+
|
96 |
+
|
97 |
+
def image_examples(samples, ncols, return_key=None):
|
98 |
+
global img_example_counter
|
99 |
+
trigger = False
|
100 |
+
with st.expander("Examples", True):
|
101 |
+
for i in range(len(samples) // ncols):
|
102 |
+
cols = st.columns(ncols)
|
103 |
+
for j in range(ncols):
|
104 |
+
idx = i * ncols + j
|
105 |
+
if idx >= len(samples):
|
106 |
+
continue
|
107 |
+
entry = samples[idx]
|
108 |
+
with cols[j]:
|
109 |
+
st.image(entry['dispi'])
|
110 |
+
img_example_counter += 1
|
111 |
+
with st.columns(5)[2]:
|
112 |
+
this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
|
113 |
+
trigger = trigger or this_trigger
|
114 |
+
if this_trigger:
|
115 |
+
if return_key is None:
|
116 |
+
for k, v in entry.items():
|
117 |
+
if not k.startswith('disp'):
|
118 |
+
sq(k, v)
|
119 |
+
else:
|
120 |
+
trigger = entry[return_key]
|
121 |
+
return trigger
|
122 |
+
|
123 |
+
|
124 |
+
def text_examples(samples):
|
125 |
+
return st.selectbox("Or pick an example", samples)
|
126 |
+
|
127 |
+
|
128 |
def demo_classification():
|
129 |
load_data = misc_utils.input_3d_shape('cls')
|
130 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
|
|
134 |
return
|
135 |
lvis_run = st.button("Run Classification on LVIS Categories")
|
136 |
custom_run = st.button("Run Classification on Custom Categories")
|
137 |
+
if lvis_run or auto_submit("clsauto"):
|
138 |
pc = load_data(prog)
|
139 |
col2 = misc_utils.render_pc(pc)
|
140 |
prog.progress(0.5, "Running Classification")
|
|
|
158 |
st.text(cat)
|
159 |
st.caption("Similarity %.4f" % sim)
|
160 |
prog.progress(1.0, "Idle")
|
161 |
+
if image_examples(samples_index.classification, 3):
|
162 |
+
queue_auto_submit("clsauto")
|
163 |
|
164 |
|
165 |
def demo_captioning():
|
166 |
with st.form("capform"):
|
167 |
load_data = misc_utils.input_3d_shape('cap')
|
168 |
+
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
|
169 |
+
if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
|
170 |
pc = load_data(prog)
|
171 |
col2 = misc_utils.render_pc(pc)
|
172 |
prog.progress(0.5, "Running Generation")
|
173 |
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
174 |
st.text(cap)
|
175 |
prog.progress(1.0, "Idle")
|
176 |
+
if image_examples(samples_index.cap, 3):
|
177 |
+
queue_auto_submit("capauto")
|
178 |
|
179 |
|
180 |
def demo_pc2img():
|
181 |
with st.form("sdform"):
|
182 |
load_data = misc_utils.input_3d_shape('sd')
|
183 |
+
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
|
184 |
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
185 |
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
186 |
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
187 |
width = 640 # st.slider('Width', 480, 640, step=32)
|
188 |
height = 640 # st.slider('Height', 480, 640, step=32)
|
189 |
+
if st.form_submit_button("Generate") or auto_submit("sdauto"):
|
190 |
pc = load_data(prog)
|
191 |
col2 = misc_utils.render_pc(pc)
|
192 |
prog.progress(0.49, "Running Generation")
|
|
|
201 |
with col2:
|
202 |
st.image(img)
|
203 |
prog.progress(1.0, "Idle")
|
204 |
+
if image_examples(samples_index.sd, 3):
|
205 |
+
queue_auto_submit("sdauto")
|
206 |
|
207 |
|
208 |
def retrieval_results(results):
|
|
|
227 |
with st.form("rtextform"):
|
228 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rtext')
|
229 |
text = st.text_input("Input Text")
|
230 |
+
picked_sample = text_examples(samples_index.retrieval_texts)
|
231 |
if st.form_submit_button("Run with Text"):
|
232 |
prog.progress(0.49, "Computing Embeddings")
|
233 |
device = clip_model.device
|
234 |
+
tn = clip_prep(
|
235 |
+
text=[text or picked_sample], return_tensors='pt', truncation=True, max_length=76
|
236 |
+
).to(device)
|
237 |
enc = clip_model.get_text_features(**tn).float().cpu()
|
238 |
prog.progress(0.7, "Running Retrieval")
|
239 |
retrieval_results(retrieval.retrieve(enc, k))
|
240 |
prog.progress(1.0, "Idle")
|
241 |
|
242 |
with tab_img:
|
243 |
+
submit = False
|
244 |
with st.form("rimgform"):
|
245 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rimage')
|
246 |
+
pic = st.file_uploader("Upload an Image", key='rimageinput')
|
247 |
if st.form_submit_button("Run with Image"):
|
248 |
+
submit = True
|
249 |
+
sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
|
250 |
+
if sample_got:
|
251 |
+
pic = sample_got
|
252 |
+
if sample_got or submit:
|
253 |
+
img = Image.open(pic)
|
254 |
+
st.image(img)
|
255 |
+
prog.progress(0.49, "Computing Embeddings")
|
256 |
+
device = clip_model.device
|
257 |
+
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
258 |
+
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
259 |
+
prog.progress(0.7, "Running Retrieval")
|
260 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
261 |
+
prog.progress(1.0, "Idle")
|
262 |
|
263 |
with tab_pc:
|
264 |
with st.form("rpcform"):
|
265 |
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rpc')
|
266 |
load_data = misc_utils.input_3d_shape('retpc')
|
267 |
+
if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
|
268 |
pc = load_data(prog)
|
269 |
col2 = misc_utils.render_pc(pc)
|
270 |
prog.progress(0.49, "Computing Embeddings")
|
|
|
273 |
prog.progress(0.7, "Running Retrieval")
|
274 |
retrieval_results(retrieval.retrieve(enc, k))
|
275 |
prog.progress(1.0, "Idle")
|
276 |
+
if image_examples(samples_index.pret, 3):
|
277 |
+
queue_auto_submit("rpcauto")
|
278 |
|
279 |
|
280 |
try:
|
samples/retrieval-img/img4.jpg
DELETED
Binary file (48.3 kB)
|
|
samples/retrieval-img/img6.jpg
CHANGED
samples/retrieval-img/img7.jpg
CHANGED
samples/retrieval-img/img8.jpg
CHANGED
samples/retrieval-img/img9.jpg
ADDED
samples/retrieval-text.txt
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
shark
|
2 |
-
swordfish
|
3 |
-
dolphin
|
4 |
-
goldfish
|
5 |
-
high heels
|
6 |
-
boots
|
7 |
-
slippers
|
8 |
-
sneakers
|
9 |
-
tiki mug
|
10 |
-
viking mug
|
11 |
-
animal-shaped mug
|
12 |
-
travel mug
|
13 |
-
white conical mug
|
14 |
-
green cubic mug
|
15 |
-
blue spherical mug
|
16 |
-
orange cylinder mug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples/sd-text.txt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
b8db8dc5caad4fa5842a9ed6dbd2e9d6,falcon
|
2 |
-
ff2875fb1a5b4771805a5fd35c8fe7bb,in the woods
|
3 |
-
tpvzmLUXAURQ7ZxccJIBZvcIDlr,above the fields
|
|
|
|
|
|
|
|
samples_index.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
cap_base = 'samples/caption'
|
5 |
+
cap = [
|
6 |
+
dict(cap_objaid=os.path.splitext(x)[0], dispi=os.path.join(cap_base, x))
|
7 |
+
for x in sorted(os.listdir(cap_base))
|
8 |
+
]
|
9 |
+
|
10 |
+
cls_base = 'samples/classification'
|
11 |
+
classification = [
|
12 |
+
dict(cls_objaid=os.path.splitext(x)[0], dispi=os.path.join(cls_base, x))
|
13 |
+
for x in sorted(os.listdir(cls_base))
|
14 |
+
]
|
15 |
+
|
16 |
+
sd_base = 'samples/sd'
|
17 |
+
sd_texts = {
|
18 |
+
'b8db8dc5caad4fa5842a9ed6dbd2e9d6': 'falcon',
|
19 |
+
'ff2875fb1a5b4771805a5fd35c8fe7bb': 'in the woods',
|
20 |
+
'tpvzmLUXAURQ7ZxccJIBZvcIDlr': 'above the fields'
|
21 |
+
}
|
22 |
+
sd = [
|
23 |
+
dict(
|
24 |
+
sd_objaid=os.path.splitext(x)[0],
|
25 |
+
dispi=os.path.join(sd_base, x),
|
26 |
+
sdtprompt=sd_texts.get(os.path.splitext(x)[0], '')
|
27 |
+
)
|
28 |
+
for x in sorted(os.listdir(sd_base))
|
29 |
+
]
|
30 |
+
|
31 |
+
retrieval_texts = """
|
32 |
+
shark
|
33 |
+
swordfish
|
34 |
+
dolphin
|
35 |
+
goldfish
|
36 |
+
high heels
|
37 |
+
boots
|
38 |
+
slippers
|
39 |
+
sneakers
|
40 |
+
tiki mug
|
41 |
+
viking mug
|
42 |
+
animal-shaped mug
|
43 |
+
travel mug
|
44 |
+
white conical mug
|
45 |
+
green cubic mug
|
46 |
+
blue spherical mug
|
47 |
+
orange cylinder mug
|
48 |
+
""".splitlines()
|
49 |
+
retrieval_texts = [x.strip() for x in retrieval_texts if x.strip()]
|
50 |
+
|
51 |
+
pret_base = 'samples/retrieval-pc'
|
52 |
+
pret = [
|
53 |
+
dict(retpc_objaid=os.path.splitext(x)[0], dispi=os.path.join(pret_base, x))
|
54 |
+
for x in sorted(os.listdir(pret_base))
|
55 |
+
]
|
56 |
+
|
57 |
+
iret_base = 'samples/retrieval-img'
|
58 |
+
iret = [
|
59 |
+
dict(rimageinput=os.path.join(iret_base, x), dispi=os.path.join(iret_base, x))
|
60 |
+
for x in sorted(os.listdir(iret_base))
|
61 |
+
]
|