Spaces:
Runtime error
Runtime error
eliphatfs
commited on
Commit
Β·
a886fec
1
Parent(s):
ff2e0a9
Merged super demo.
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: OpenShape
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: purple
|
|
|
|
| 1 |
---
|
| 2 |
+
title: OpenShape Demo
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: purple
|
app.py
CHANGED
|
@@ -1,30 +1,67 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from huggingface_hub import HfFolder, snapshot_download
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
import numpy
|
|
|
|
| 8 |
import openshape
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
@st.cache_resource
|
| 13 |
def load_openshape(name):
|
| 14 |
return openshape.load_pc_encoder(name)
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
f32 = numpy.float32
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
st.title("OpenShape Demo")
|
| 23 |
-
load_data = misc_utils.input_3d_shape()
|
| 24 |
prog = st.progress(0.0, "Idle")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
if st.button("Run Classification on LVIS Categories"):
|
| 29 |
pc = load_data(prog)
|
| 30 |
col2 = misc_utils.render_pc(pc)
|
|
@@ -35,5 +72,127 @@ try:
|
|
| 35 |
st.text(cat)
|
| 36 |
st.caption("Similarity %.4f" % sim)
|
| 37 |
prog.progress(1.0, "Idle")
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
import streamlit as st
|
| 3 |
from huggingface_hub import HfFolder, snapshot_download
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@st.cache_data
|
| 7 |
+
def load_support():
|
| 8 |
+
HfFolder().save_token(st.secrets['etoken'])
|
| 9 |
+
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# load_support()
|
| 13 |
|
| 14 |
|
| 15 |
import numpy
|
| 16 |
+
import torch
|
| 17 |
import openshape
|
| 18 |
+
import transformers
|
| 19 |
+
from PIL import Image
|
| 20 |
|
| 21 |
@st.cache_resource
|
| 22 |
def load_openshape(name):
|
| 23 |
return openshape.load_pc_encoder(name)
|
| 24 |
|
| 25 |
|
| 26 |
+
@st.cache_resource
|
| 27 |
+
def load_openclip():
|
| 28 |
+
return transformers.CLIPModel.from_pretrained(
|
| 29 |
+
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
| 30 |
+
low_cpu_mem_usage=True, torch_dtype=half,
|
| 31 |
+
offload_state_dict=True
|
| 32 |
+
), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
f32 = numpy.float32
|
| 36 |
+
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
|
| 37 |
+
# clip_model, clip_prep = None, None
|
| 38 |
+
clip_model, clip_prep = load_openclip()
|
| 39 |
+
model_b32 = load_openshape('openshape-pointbert-vitb32-rgb').cpu()
|
| 40 |
+
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
|
| 41 |
+
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
|
| 42 |
+
torch.set_grad_enabled(False)
|
| 43 |
|
| 44 |
+
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
| 45 |
|
| 46 |
st.title("OpenShape Demo")
|
|
|
|
| 47 |
prog = st.progress(0.0, "Idle")
|
| 48 |
+
tab_cls, tab_text, tab_img, tab_pc, tab_sd, tab_cap = st.tabs([
|
| 49 |
+
"Classification",
|
| 50 |
+
"Retrieval from Text",
|
| 51 |
+
"Retrieval from Image",
|
| 52 |
+
"Retrieval from 3D Shape",
|
| 53 |
+
"Image Generation",
|
| 54 |
+
"Captioning",
|
| 55 |
+
])
|
| 56 |
|
| 57 |
|
| 58 |
+
def demo_classification():
|
| 59 |
+
load_data = misc_utils.input_3d_shape('cls')
|
| 60 |
+
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
| 61 |
+
cats = [a.strip() for a in cats.split(',')]
|
| 62 |
+
if len(cats) > 64:
|
| 63 |
+
st.error('Maximum 64 custom categories supported in the demo')
|
| 64 |
+
return
|
| 65 |
if st.button("Run Classification on LVIS Categories"):
|
| 66 |
pc = load_data(prog)
|
| 67 |
col2 = misc_utils.render_pc(pc)
|
|
|
|
| 72 |
st.text(cat)
|
| 73 |
st.caption("Similarity %.4f" % sim)
|
| 74 |
prog.progress(1.0, "Idle")
|
| 75 |
+
if st.button("Run Classification on Custom Categories"):
|
| 76 |
+
pc = load_data(prog)
|
| 77 |
+
col2 = misc_utils.render_pc(pc)
|
| 78 |
+
prog.progress(0.5, "Computing Category Embeddings")
|
| 79 |
+
device = clip_model.device
|
| 80 |
+
tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76).to(device)
|
| 81 |
+
feats = clip_model.get_text_features(**tn).float().cpu()
|
| 82 |
+
prog.progress(0.5, "Running Classification")
|
| 83 |
+
pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
|
| 84 |
+
with col2:
|
| 85 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
| 86 |
+
st.text(cat)
|
| 87 |
+
st.caption("Similarity %.4f" % sim)
|
| 88 |
+
prog.progress(1.0, "Idle")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def demo_captioning():
|
| 92 |
+
load_data = misc_utils.input_3d_shape('cap')
|
| 93 |
+
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0)
|
| 94 |
+
if st.button("Generate a Caption"):
|
| 95 |
+
pc = load_data(prog)
|
| 96 |
+
col2 = misc_utils.render_pc(pc)
|
| 97 |
+
prog.progress(0.5, "Running Generation")
|
| 98 |
+
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
| 99 |
+
st.text(cap)
|
| 100 |
+
prog.progress(1.0, "Idle")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def demo_pc2img():
|
| 104 |
+
load_data = misc_utils.input_3d_shape('sd')
|
| 105 |
+
prompt = st.text_input("Prompt (Optional)")
|
| 106 |
+
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
| 107 |
+
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
| 108 |
+
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
| 109 |
+
width = 640 # st.slider('Width', 480, 640, step=32)
|
| 110 |
+
height = 640 # st.slider('Height', 480, 640, step=32)
|
| 111 |
+
if st.button("Generate"):
|
| 112 |
+
pc = load_data(prog)
|
| 113 |
+
col2 = misc_utils.render_pc(pc)
|
| 114 |
+
prog.progress(0.49, "Running Generation")
|
| 115 |
+
if torch.cuda.is_available():
|
| 116 |
+
clip_model.cpu()
|
| 117 |
+
img = sd_pc2img.pc_to_image(
|
| 118 |
+
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
| 119 |
+
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
| 120 |
+
)
|
| 121 |
+
if torch.cuda.is_available():
|
| 122 |
+
clip_model.cuda()
|
| 123 |
+
with col2:
|
| 124 |
+
st.image(img)
|
| 125 |
+
prog.progress(1.0, "Idle")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def retrieval_results(results):
|
| 129 |
+
for i in range(len(results) // 4):
|
| 130 |
+
cols = st.columns(4)
|
| 131 |
+
for j in range(4):
|
| 132 |
+
idx = i * 4 + j
|
| 133 |
+
if idx >= len(results):
|
| 134 |
+
continue
|
| 135 |
+
entry = results[idx]
|
| 136 |
+
with cols[j]:
|
| 137 |
+
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
|
| 138 |
+
st.image(entry['img'])
|
| 139 |
+
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
|
| 140 |
+
# st.text(entry['name'])
|
| 141 |
+
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
|
| 142 |
+
st.markdown(f"[{quote_name}]({ext_link})")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def demo_retrieval():
|
| 146 |
+
with tab_text:
|
| 147 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rtext')
|
| 148 |
+
text = st.text_input("Input Text")
|
| 149 |
+
if st.button("Run with Text"):
|
| 150 |
+
prog.progress(0.49, "Computing Embeddings")
|
| 151 |
+
device = clip_model.device
|
| 152 |
+
tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
|
| 153 |
+
enc = clip_model.get_text_features(**tn).float().cpu()
|
| 154 |
+
prog.progress(0.7, "Running Retrieval")
|
| 155 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
| 156 |
+
prog.progress(1.0, "Idle")
|
| 157 |
+
|
| 158 |
+
with tab_img:
|
| 159 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rimage')
|
| 160 |
+
pic = st.file_uploader("Upload an Image")
|
| 161 |
+
if st.button("Run with Image"):
|
| 162 |
+
img = Image.open(pic)
|
| 163 |
+
st.image(img)
|
| 164 |
+
prog.progress(0.49, "Computing Embeddings")
|
| 165 |
+
device = clip_model.device
|
| 166 |
+
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
| 167 |
+
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
| 168 |
+
prog.progress(0.7, "Running Retrieval")
|
| 169 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
| 170 |
+
prog.progress(1.0, "Idle")
|
| 171 |
+
|
| 172 |
+
with tab_pc:
|
| 173 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rpc')
|
| 174 |
+
load_data = misc_utils.input_3d_shape('retpc')
|
| 175 |
+
if st.button("Run with Shape"):
|
| 176 |
+
pc = load_data(prog)
|
| 177 |
+
col2 = misc_utils.render_pc(pc)
|
| 178 |
+
prog.progress(0.49, "Computing Embeddings")
|
| 179 |
+
ref_dev = next(model_g14.parameters()).device
|
| 180 |
+
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
|
| 181 |
+
prog.progress(0.7, "Running Retrieval")
|
| 182 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
| 183 |
+
prog.progress(1.0, "Idle")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
if torch.cuda.is_available():
|
| 188 |
+
clip_model.cuda()
|
| 189 |
+
with tab_cls:
|
| 190 |
+
demo_classification()
|
| 191 |
+
with tab_cap:
|
| 192 |
+
demo_captioning()
|
| 193 |
+
with tab_sd:
|
| 194 |
+
demo_pc2img()
|
| 195 |
+
demo_retrieval()
|
| 196 |
+
except Exception:
|
| 197 |
+
import traceback
|
| 198 |
+
st.error(traceback.format_exc().replace("\n", " \n"))
|