Spaces:
Running
on
T4
Running
on
T4
eliphatfs
commited on
Commit
Β·
a886fec
1
Parent(s):
ff2e0a9
Merged super demo.
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: OpenShape
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
|
|
1 |
---
|
2 |
+
title: OpenShape Demo
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
app.py
CHANGED
@@ -1,30 +1,67 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from huggingface_hub import HfFolder, snapshot_download
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
import numpy
|
|
|
8 |
import openshape
|
9 |
-
|
10 |
-
|
11 |
|
12 |
@st.cache_resource
|
13 |
def load_openshape(name):
|
14 |
return openshape.load_pc_encoder(name)
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
f32 = numpy.float32
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
|
22 |
st.title("OpenShape Demo")
|
23 |
-
load_data = misc_utils.input_3d_shape()
|
24 |
prog = st.progress(0.0, "Idle")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if st.button("Run Classification on LVIS Categories"):
|
29 |
pc = load_data(prog)
|
30 |
col2 = misc_utils.render_pc(pc)
|
@@ -35,5 +72,127 @@ try:
|
|
35 |
st.text(cat)
|
36 |
st.caption("Similarity %.4f" % sim)
|
37 |
prog.progress(1.0, "Idle")
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
import streamlit as st
|
3 |
from huggingface_hub import HfFolder, snapshot_download
|
4 |
+
|
5 |
+
|
6 |
+
@st.cache_data
|
7 |
+
def load_support():
|
8 |
+
HfFolder().save_token(st.secrets['etoken'])
|
9 |
+
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
10 |
+
|
11 |
+
|
12 |
+
# load_support()
|
13 |
|
14 |
|
15 |
import numpy
|
16 |
+
import torch
|
17 |
import openshape
|
18 |
+
import transformers
|
19 |
+
from PIL import Image
|
20 |
|
21 |
@st.cache_resource
|
22 |
def load_openshape(name):
|
23 |
return openshape.load_pc_encoder(name)
|
24 |
|
25 |
|
26 |
+
@st.cache_resource
|
27 |
+
def load_openclip():
|
28 |
+
return transformers.CLIPModel.from_pretrained(
|
29 |
+
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
30 |
+
low_cpu_mem_usage=True, torch_dtype=half,
|
31 |
+
offload_state_dict=True
|
32 |
+
), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
33 |
+
|
34 |
+
|
35 |
f32 = numpy.float32
|
36 |
+
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
|
37 |
+
# clip_model, clip_prep = None, None
|
38 |
+
clip_model, clip_prep = load_openclip()
|
39 |
+
model_b32 = load_openshape('openshape-pointbert-vitb32-rgb').cpu()
|
40 |
+
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
|
41 |
+
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
|
42 |
+
torch.set_grad_enabled(False)
|
43 |
|
44 |
+
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
45 |
|
46 |
st.title("OpenShape Demo")
|
|
|
47 |
prog = st.progress(0.0, "Idle")
|
48 |
+
tab_cls, tab_text, tab_img, tab_pc, tab_sd, tab_cap = st.tabs([
|
49 |
+
"Classification",
|
50 |
+
"Retrieval from Text",
|
51 |
+
"Retrieval from Image",
|
52 |
+
"Retrieval from 3D Shape",
|
53 |
+
"Image Generation",
|
54 |
+
"Captioning",
|
55 |
+
])
|
56 |
|
57 |
|
58 |
+
def demo_classification():
|
59 |
+
load_data = misc_utils.input_3d_shape('cls')
|
60 |
+
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
61 |
+
cats = [a.strip() for a in cats.split(',')]
|
62 |
+
if len(cats) > 64:
|
63 |
+
st.error('Maximum 64 custom categories supported in the demo')
|
64 |
+
return
|
65 |
if st.button("Run Classification on LVIS Categories"):
|
66 |
pc = load_data(prog)
|
67 |
col2 = misc_utils.render_pc(pc)
|
|
|
72 |
st.text(cat)
|
73 |
st.caption("Similarity %.4f" % sim)
|
74 |
prog.progress(1.0, "Idle")
|
75 |
+
if st.button("Run Classification on Custom Categories"):
|
76 |
+
pc = load_data(prog)
|
77 |
+
col2 = misc_utils.render_pc(pc)
|
78 |
+
prog.progress(0.5, "Computing Category Embeddings")
|
79 |
+
device = clip_model.device
|
80 |
+
tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76).to(device)
|
81 |
+
feats = clip_model.get_text_features(**tn).float().cpu()
|
82 |
+
prog.progress(0.5, "Running Classification")
|
83 |
+
pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
|
84 |
+
with col2:
|
85 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
86 |
+
st.text(cat)
|
87 |
+
st.caption("Similarity %.4f" % sim)
|
88 |
+
prog.progress(1.0, "Idle")
|
89 |
+
|
90 |
+
|
91 |
+
def demo_captioning():
|
92 |
+
load_data = misc_utils.input_3d_shape('cap')
|
93 |
+
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0)
|
94 |
+
if st.button("Generate a Caption"):
|
95 |
+
pc = load_data(prog)
|
96 |
+
col2 = misc_utils.render_pc(pc)
|
97 |
+
prog.progress(0.5, "Running Generation")
|
98 |
+
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
99 |
+
st.text(cap)
|
100 |
+
prog.progress(1.0, "Idle")
|
101 |
+
|
102 |
+
|
103 |
+
def demo_pc2img():
|
104 |
+
load_data = misc_utils.input_3d_shape('sd')
|
105 |
+
prompt = st.text_input("Prompt (Optional)")
|
106 |
+
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
107 |
+
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
108 |
+
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
109 |
+
width = 640 # st.slider('Width', 480, 640, step=32)
|
110 |
+
height = 640 # st.slider('Height', 480, 640, step=32)
|
111 |
+
if st.button("Generate"):
|
112 |
+
pc = load_data(prog)
|
113 |
+
col2 = misc_utils.render_pc(pc)
|
114 |
+
prog.progress(0.49, "Running Generation")
|
115 |
+
if torch.cuda.is_available():
|
116 |
+
clip_model.cpu()
|
117 |
+
img = sd_pc2img.pc_to_image(
|
118 |
+
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
119 |
+
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
120 |
+
)
|
121 |
+
if torch.cuda.is_available():
|
122 |
+
clip_model.cuda()
|
123 |
+
with col2:
|
124 |
+
st.image(img)
|
125 |
+
prog.progress(1.0, "Idle")
|
126 |
+
|
127 |
+
|
128 |
+
def retrieval_results(results):
|
129 |
+
for i in range(len(results) // 4):
|
130 |
+
cols = st.columns(4)
|
131 |
+
for j in range(4):
|
132 |
+
idx = i * 4 + j
|
133 |
+
if idx >= len(results):
|
134 |
+
continue
|
135 |
+
entry = results[idx]
|
136 |
+
with cols[j]:
|
137 |
+
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
|
138 |
+
st.image(entry['img'])
|
139 |
+
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
|
140 |
+
# st.text(entry['name'])
|
141 |
+
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
|
142 |
+
st.markdown(f"[{quote_name}]({ext_link})")
|
143 |
+
|
144 |
+
|
145 |
+
def demo_retrieval():
|
146 |
+
with tab_text:
|
147 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rtext')
|
148 |
+
text = st.text_input("Input Text")
|
149 |
+
if st.button("Run with Text"):
|
150 |
+
prog.progress(0.49, "Computing Embeddings")
|
151 |
+
device = clip_model.device
|
152 |
+
tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
|
153 |
+
enc = clip_model.get_text_features(**tn).float().cpu()
|
154 |
+
prog.progress(0.7, "Running Retrieval")
|
155 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
156 |
+
prog.progress(1.0, "Idle")
|
157 |
+
|
158 |
+
with tab_img:
|
159 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rimage')
|
160 |
+
pic = st.file_uploader("Upload an Image")
|
161 |
+
if st.button("Run with Image"):
|
162 |
+
img = Image.open(pic)
|
163 |
+
st.image(img)
|
164 |
+
prog.progress(0.49, "Computing Embeddings")
|
165 |
+
device = clip_model.device
|
166 |
+
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
167 |
+
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
168 |
+
prog.progress(0.7, "Running Retrieval")
|
169 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
170 |
+
prog.progress(1.0, "Idle")
|
171 |
+
|
172 |
+
with tab_pc:
|
173 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rpc')
|
174 |
+
load_data = misc_utils.input_3d_shape('retpc')
|
175 |
+
if st.button("Run with Shape"):
|
176 |
+
pc = load_data(prog)
|
177 |
+
col2 = misc_utils.render_pc(pc)
|
178 |
+
prog.progress(0.49, "Computing Embeddings")
|
179 |
+
ref_dev = next(model_g14.parameters()).device
|
180 |
+
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
|
181 |
+
prog.progress(0.7, "Running Retrieval")
|
182 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
183 |
+
prog.progress(1.0, "Idle")
|
184 |
+
|
185 |
+
|
186 |
+
try:
|
187 |
+
if torch.cuda.is_available():
|
188 |
+
clip_model.cuda()
|
189 |
+
with tab_cls:
|
190 |
+
demo_classification()
|
191 |
+
with tab_cap:
|
192 |
+
demo_captioning()
|
193 |
+
with tab_sd:
|
194 |
+
demo_pc2img()
|
195 |
+
demo_retrieval()
|
196 |
+
except Exception:
|
197 |
+
import traceback
|
198 |
+
st.error(traceback.format_exc().replace("\n", " \n"))
|