Spaces:
Running
Running
File size: 18,311 Bytes
8700a34 52a7d50 d99db10 6bbd3ca bda7361 c39e604 af17670 e36dd54 70678a5 b3ae078 4556b98 1fab2aa 76bbd8a d99db10 fbe5c6d 0cd7858 6a96e5e 17a7267 ab46adf 836458e 86a0b7a 6bbd3ca bda7361 0f0bcd2 0e96068 539adb3 686167b a90d0cf c14f4d2 02494dd 31d9e37 574f9e3 bda7361 574f9e3 6bbd3ca 574f9e3 6bbd3ca 574f9e3 6bbd3ca a82199b 6bbd3ca c39e604 bda7361 574f9e3 bda7361 574f9e3 420d3c9 bda7361 41d335c 574f9e3 41d335c 574f9e3 f198fb3 574f9e3 f8ec4b3 574f9e3 0ddbc70 574f9e3 0ddbc70 f660b8b 0ddbc70 1106695 0ddbc70 574f9e3 0ddbc70 574f9e3 0ddbc70 3302f65 539adb3 20f087e 539adb3 26decc6 539adb3 42a6b89 d167323 a90d0cf 0a12a49 11d5e31 0a12a49 11d5e31 0a12a49 11d5e31 0a12a49 a90d0cf 42a6b89 1fd89c5 cfd8768 1fd89c5 cfd8768 fbe5c6d 64e0d3f fbe5c6d 50e0c0e fbe5c6d d99db10 64e0d3f d99db10 1fab2aa fbe5c6d d99db10 70678a5 fbe5c6d 1fd89c5 cfd8768 fbe5c6d cfd8768 d99db10 cfd8768 1fd89c5 cfd8768 fbe5c6d cfd8768 22c526e e0a4a69 22c526e 8601b67 e2d5a35 ee808b2 e2d5a35 ee808b2 8601b67 e2d5a35 1d4a335 2c29573 e2d5a35 2c29573 8601b67 e2d5a35 ee808b2 8601b67 ee808b2 cf71890 e2d5a35 cf71890 e2d5a35 8601b67 e2d5a35 6fe91f4 fe58c62 6fe91f4 31d9e37 1a6d882 ab46adf 31d9e37 ab46adf fd35e4e 1a6d882 31d9e37 ab46adf 31d9e37 1a6d882 694da95 ab46adf 694da95 f0e6e2e 694da95 ab46adf 694da95 ab46adf 694da95 ab46adf 31d9e37 694da95 31d9e37 694da95 ab46adf 31d9e37 694da95 31d9e37 694da95 31d9e37 22c526e 36dea63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import fitz
import io
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse
from transformers import pipeline
from PIL import Image
from io import BytesIO
from starlette.middleware import Middleware
from starlette.middleware.cors import CORSMiddleware
from pdf2image import convert_from_bytes
from pydub import AudioSegment
import numpy as np
import json
import torchaudio
import torch
from pydub import AudioSegment
import speech_recognition as sr
import logging
import asyncio
from concurrent.futures import ThreadPoolExecutor
import re
from pydantic import BaseModel
from typing import List, Dict, Any
app = FastAPI()
# Set up CORS middleware
origins = ["*"] # or specify your list of allowed origins
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut")
nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices", ignore_mismatched_sizes=True)
nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2")
nlp_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
nlp_classification_v2 = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
nlp_speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
nlp_sequence_classification = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
nlp_main_classification = pipeline("zero-shot-classification", model="roberta-large-mnli")
description = """
## Image-based Document QA
This API performs document question answering using a LayoutLMv2-based model.
### Endpoints:
- **POST /uploadfile/:** Upload an image file to extract text and answer provided questions.
- **POST /pdfQA/:** Provide a PDF file to extract text and answer provided questions.
"""
app = FastAPI(docs_url="/", description=description)
@app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
file: UploadFile = File(...),
questions: str = Form(...),
):
try:
# Read the uploaded file as bytes
contents = await file.read()
# Open the image using PIL
image = Image.open(BytesIO(contents))
# Perform document question answering for each question using LayoutLMv2-based model
answers_dict = {}
for question in questions.split(','):
result = nlp_qa(
image,
question.strip()
)
# Access the 'answer' key from the first item in the result list
answer = result[0]['answer']
# Format the question as a string without extra characters
formatted_question = question.strip("[]")
answers_dict[formatted_question] = answer
return answers_dict
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
file: UploadFile = File(...),
questions: str = Form(...),
):
try:
# Read the uploaded file as bytes
contents = await file.read()
# Open the image using PIL
image = Image.open(BytesIO(contents))
# Perform document question answering for each question using LayoutLMv2-based model
answers_dict = {}
for question in questions.split(','):
result = nlp_qa_v2(
image,
question.strip()
)
# Access the 'answer' key from the first item in the result list
answer = result[0]['answer']
# Format the question as a string without extra characters
formatted_question = question.strip("[]")
answers_dict[formatted_question] = answer
return answers_dict
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/uploadfilev3/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
context: str = Form(...),
question: str = Form(...),
):
try:
QA_input = {
'question': question,
'context': context
}
res = nlp_qa_v3(QA_input)
return res['answer']
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/classify/", description="Classify the provided text.")
async def classify_text(text: str = Form(...)):
try:
# Perform text classification using the pipeline
result = nlp_classification(text)
# Return the classification result
return result
except Exception as e:
return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500)
@app.post("/test_classify/", description="Classify the provided text with positive, neutral, or negative sentiment.")
async def test_classify_text(text: str = Form(...)):
try:
# Perform text classification using the updated model that returns positive, neutral, or negative
result = nlp_classification_v2(text)
# Print the raw label for debugging purposes (can be removed later)
raw_label = result[0]['label']
print(f"Raw label from model: {raw_label}")
# Map the model labels to human-readable format
label_map = {
"negative": "Negative",
"neutral": "Neutral",
"positive": "Positive"
}
# Get the readable label from the map
formatted_label = label_map.get(raw_label, "Unknown")
return {"label": formatted_label, "score": result[0]['score']}
except Exception as e:
return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500)
@app.post("/transcribe_and_answer/", description="Transcribe audio and answer provided questions based on the transcription.")
async def transcribe_and_answer(
file: UploadFile = File(...),
questions: str = Form(...)
):
try:
# Ensure correct file format
if file.content_type not in ["audio/wav", "audio/mpeg", "audio/mp3", "audio/webm"]:
raise HTTPException(status_code=400, detail="Unsupported audio format. Please upload a WAV or MP3 file.")
logging.info(f"Received file type: {file.content_type}")
logging.info(f"Received questions: {questions}")
# Convert uploaded file to WAV if needed
audio_data = await file.read()
audio_file = io.BytesIO(audio_data)
if file.content_type in ["audio/mpeg", "audio/mp3"]:
audio = AudioSegment.from_file(audio_file, format="mp3")
audio_wav = io.BytesIO()
audio.export(audio_wav, format="wav")
audio_wav.seek(0)
elif file.content_type == "audio/webm":
audio = AudioSegment.from_file(audio_file, format="webm")
audio_wav = io.BytesIO()
audio.export(audio_wav, format="wav")
audio_wav.seek(0)
else:
audio_wav = audio_file
# Transcription
recognizer = sr.Recognizer()
with sr.AudioFile(audio_wav) as source:
audio = recognizer.record(source)
transcription_text = recognizer.recognize_google(audio)
# Parse questions JSON
try:
questions_dict = json.loads(questions)
except json.JSONDecodeError as e:
raise HTTPException(status_code=400, detail="Invalid JSON format for questions")
# Answer each question
answers_dict = {}
for key, question in questions_dict.items():
QA_input = {
'question': question,
'context': transcription_text
}
# Add error handling here for model-based Q&A
try:
result = nlp_qa_v3(QA_input) # Ensure this is defined or imported correctly
answers_dict[key] = result['answer']
except Exception as e:
logging.error(f"Error in question answering model: {e}")
answers_dict[key] = "Error in answering this question."
# Return transcription + answers
return {
"transcription": transcription_text,
"answers": answers_dict
}
except Exception as e:
logging.error(f"General error: {e}")
raise HTTPException(status_code=500, detail="Internal Server Error")
@app.post("/test-transcription/", description="Upload an audio file to test transcription using speech_recognition.")
async def test_transcription(file: UploadFile = File(...)):
try:
# Check if the file format is supported
if file.content_type not in ["audio/wav", "audio/mpeg", "audio/mp3"]:
raise HTTPException(status_code=400, detail="Unsupported audio format. Please upload a WAV or MP3 file.")
# Convert uploaded file to WAV if necessary for compatibility with SpeechRecognition
audio_data = await file.read()
audio_file = io.BytesIO(audio_data)
if file.content_type in ["audio/mpeg", "audio/mp3"]:
# Convert MP3 to WAV
audio = AudioSegment.from_file(audio_file, format="mp3")
audio_wav = io.BytesIO()
audio.export(audio_wav, format="wav")
audio_wav.seek(0)
else:
audio_wav = audio_file
# Transcribe audio using speech_recognition
recognizer = sr.Recognizer()
with sr.AudioFile(audio_wav) as source:
audio = recognizer.record(source)
transcription = recognizer.recognize_google(audio)
# Return the transcription
return {"transcription": transcription}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during transcription: {str(e)}")
# Define the ThreadPoolExecutor globally to manage asynchronous execution
executor = ThreadPoolExecutor(max_workers=10)
# Predefined classifications
labels = [
"All Pricing copy quote requested",
"Change to quote",
"Change to quote & Status Check",
"Change to quote (Items missed?)",
"Confirmation",
"Copy quote requested",
"Cost copy quote requested",
"MRSP copy quote requested",
"MSRP & All Pricing copy quote requested",
"MSRP & Cost copy quote requested",
"No narrative in email",
"Notes not clear",
"Retail copy quote requested",
"Status Check (possibly)"
]
@app.post("/fast_classify/", description="Quickly classify text into predefined categories.")
async def fast_classify_text(statement: str = Form(...)):
try:
# Use run_in_executor to handle the synchronous model call asynchronously
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(
executor,
lambda: nlp_sequence_classification(statement, labels, multi_label=False)
)
# Extract the best label and score
best_label = result["labels"][0]
best_score = result["scores"][0]
return {"classification": best_label, "confidence": best_score}
except asyncio.TimeoutError:
# Handle timeout
return JSONResponse(content="Classification timed out. Try a shorter input or increase timeout.", status_code=504)
except HTTPException as http_exc:
# Handle HTTP errors
return JSONResponse(content=f"HTTP error: {http_exc.detail}", status_code=http_exc.status_code)
except Exception as e:
# Handle general errors
return JSONResponse(content=f"Error in classification pipeline: {str(e)}", status_code=500)
# Predefined classifications
labels = [
"All Pricing copy quote requested",
"Change to quote",
"Change to quote & Status Check",
"Change to quote (Items missed?)",
"Confirmation",
"Copy quote requested",
"Cost copy quote requested",
"MRSP copy quote requested",
"MSRP & All Pricing copy quote requested",
"MSRP & Cost copy quote requested",
"No narrative in email",
"Notes not clear",
"Retail copy quote requested",
"Status Check (possibly)"
]
@app.post("/fast_classify_v2/", description="Quickly classify text into predefined categories.")
async def fast_classify_text(statement: str = Form(...)):
try:
# Use run_in_executor to handle the synchronous model call asynchronously
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(
executor,
lambda: nlp_sequence_classification(statement, labels, multi_label=False)
)
# Extract all labels and their scores
all_labels = result["labels"]
all_scores = result["scores"]
# Extract the best label and score
best_label = all_labels[0]
best_score = all_scores[0]
# Prepare the response
full_response = {
"classification": best_label,
"confidence": best_score,
"all_labels": {label: score for label, score in zip(all_labels, all_scores)}
}
return full_response
except asyncio.TimeoutError:
# Handle timeout
return JSONResponse(content="Classification timed out. Try a shorter input or increase timeout.", status_code=504)
except HTTPException as http_exc:
# Handle HTTP errors
return JSONResponse(content=f"HTTP error: {http_exc.detail}", status_code=http_exc.status_code)
except Exception as e:
# Handle general errors
return JSONResponse(content=f"Error in classification pipeline: {str(e)}", status_code=500)
# Labels for main classifications
main_labels = [
"Change to quote",
"Copy quote requested",
"Expired Quote",
"Notes not clear"
]
# Define a model for the response
class ClassificationResponse(BaseModel):
classification: str
sub_classification: str
confidence: float
scores: Dict[str, float]
# Keyword dictionaries for overriding classifications
change_to_quote_keywords = ["Per ATP", "Add", "Revised", "Remove", "Advise"]
copy_quote_requested_keywords = ["MSRP", "Send Quote", "Copy", "All pricing", "Retail"]
sub_classification_keywords = {
"MRSP": ["MSRP"],
"Direct": ["Direct"],
"All": ["All pricing"],
"MRSP & All": ["MSRP", "All pricing"]
}
# Helper function to check for keywords in a case-insensitive way
def check_keywords(statement: str, keywords: List[str]) -> bool:
return any(re.search(rf"\b{keyword}\b", statement, re.IGNORECASE) for keyword in keywords)
# Function to determine sub-classification based on keywords
def get_sub_classification(statement: str) -> str:
for sub_label, keywords in sub_classification_keywords.items():
if all(check_keywords(statement, [keyword]) for keyword in keywords):
return sub_label
return "None" # Default to "None" if no keywords match
@app.post("/classify_with_subcategory/", response_model=ClassificationResponse, description="Classify text into main categories with subcategories.")
async def classify_with_subcategory(statement: str = Form(...)) -> ClassificationResponse:
try:
# Check if the statement is empty or "N/A"
if not statement or statement.strip().lower() == "n/a":
return ClassificationResponse(
classification="Notes not clear",
sub_classification="None",
confidence=1.0,
scores={"main": 1.0}
)
# Keyword-based classification override
if check_keywords(statement, change_to_quote_keywords):
main_best_label = "Change to quote"
main_best_score = 1.0 # High confidence since it's a direct match
elif check_keywords(statement, copy_quote_requested_keywords):
main_best_label = "Copy quote requested"
main_best_score = 1.0
else:
# If no keywords matched, perform the main classification using the model
loop = asyncio.get_running_loop()
main_classification_result = await loop.run_in_executor(
None,
lambda: nlp_sequence_classification(statement, main_labels, multi_label=False)
)
# Extract the best main classification label and confidence score
main_best_label = main_classification_result["labels"][0]
main_best_score = main_classification_result["scores"][0]
# Perform sub-classification only if the main classification is "Copy quote requested"
if main_best_label == "Copy quote requested":
best_sub_label = get_sub_classification(statement)
else:
best_sub_label = "None"
# Gather the scores for response
scores = {"main": main_best_score}
if best_sub_label != "None":
scores[best_sub_label] = 1.0 # Assign full confidence to sub-classification matches
return ClassificationResponse(
classification=main_best_label,
sub_classification=best_sub_label,
confidence=main_best_score,
scores=scores
)
except asyncio.TimeoutError:
# Handle timeout errors
return JSONResponse(content="Classification timed out. Try a shorter input or increase timeout.", status_code=504)
except HTTPException as http_exc:
# Handle HTTP errors
return JSONResponse(content=f"HTTP error: {http_exc.detail}", status_code=http_exc.status_code)
except Exception as e:
# Handle any other errors
return JSONResponse(content=f"Error in classification pipeline: {str(e)}", status_code=500)
# Set up CORS middleware
origins = ["*"] # or specify your list of allowed origins
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
) |