Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -6,28 +6,21 @@ from PIL import Image
|
|
6 |
from io import BytesIO
|
7 |
from starlette.middleware import Middleware
|
8 |
from starlette.middleware.cors import CORSMiddleware
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Use a pipeline as a high-level helper
|
13 |
-
nlp_qa = pipeline("document-question-answering", model="impira/layoutlm-invoices")
|
14 |
-
# Use a pipeline as a high-level helper
|
15 |
-
nlp_ner = pipeline('question-answering', model='deepset/roberta-base-squad2', tokenizer='deepset/roberta-base-squad2')
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
## Image-based Document QA
|
20 |
-
This API performs document question answering using a LayoutLM-based model.
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
- **POST /pdfUpload/:** Provide a file to extract text and answer provided questions.
|
25 |
-
"""
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
@app.post("/
|
30 |
-
async def
|
31 |
file: UploadFile = File(...),
|
32 |
questions: str = Form(...),
|
33 |
):
|
@@ -38,25 +31,57 @@ async def perform_document_qa(
|
|
38 |
# Open the image using PIL
|
39 |
image = Image.open(BytesIO(contents))
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
for question in questions.split(','):
|
44 |
-
result = nlp_qa(
|
45 |
-
image,
|
46 |
-
question.strip()
|
47 |
-
)
|
48 |
-
|
49 |
-
# Access the 'answer' key from the first item in the result list
|
50 |
-
answer = result[0]['answer']
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
return answers_dict
|
58 |
except Exception as e:
|
59 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
@app.post("/pdfQA/", description=description)
|
62 |
async def pdf_question_answering(
|
|
|
6 |
from io import BytesIO
|
7 |
from starlette.middleware import Middleware
|
8 |
from starlette.middleware.cors import CORSMiddleware
|
9 |
+
import torch
|
10 |
+
import re
|
11 |
|
12 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
app = FastAPI()
|
|
|
|
|
15 |
|
16 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
17 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
|
|
|
|
18 |
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
model.to(device)
|
21 |
|
22 |
+
@app.post("/donutQA/")
|
23 |
+
async def donut_question_answering(
|
24 |
file: UploadFile = File(...),
|
25 |
questions: str = Form(...),
|
26 |
):
|
|
|
31 |
# Open the image using PIL
|
32 |
image = Image.open(BytesIO(contents))
|
33 |
|
34 |
+
# Split the questions into a list
|
35 |
+
question_list = questions.split(',')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Process document with Donut model for each question
|
38 |
+
answers = process_document(image, question_list)
|
39 |
|
40 |
+
# Return a dictionary with questions and corresponding answers
|
41 |
+
result_dict = dict(zip(question_list, answers))
|
42 |
+
return result_dict
|
43 |
|
|
|
44 |
except Exception as e:
|
45 |
+
return {"error": f"Error processing file: {str(e)}"}
|
46 |
+
|
47 |
+
def process_document(image, questions):
|
48 |
+
# prepare encoder inputs
|
49 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
50 |
+
|
51 |
+
# prepare decoder inputs
|
52 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
53 |
+
|
54 |
+
# Initialize a list to store answers for each question
|
55 |
+
answers = []
|
56 |
+
|
57 |
+
# Process each question
|
58 |
+
for question in questions:
|
59 |
+
prompt = task_prompt.replace("{user_input}", question)
|
60 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
61 |
+
|
62 |
+
# generate answer
|
63 |
+
outputs = model.generate(
|
64 |
+
pixel_values.to(device),
|
65 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
66 |
+
max_length=model.decoder.config.max_position_embeddings,
|
67 |
+
early_stopping=True,
|
68 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
69 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
70 |
+
use_cache=True,
|
71 |
+
num_beams=1,
|
72 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
73 |
+
return_dict_in_generate=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
# postprocess
|
77 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
78 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
79 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
80 |
+
|
81 |
+
# Append the answer to the list
|
82 |
+
answers.append(processor.token2json(sequence))
|
83 |
+
|
84 |
+
return answers
|
85 |
|
86 |
@app.post("/pdfQA/", description=description)
|
87 |
async def pdf_question_answering(
|