Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from transformers import pipeline
|
@@ -8,6 +9,8 @@ app = FastAPI()
|
|
8 |
|
9 |
# Use a pipeline as a high-level helper
|
10 |
nlp_qa = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
|
|
|
|
11 |
|
12 |
description = """
|
13 |
## Image-based Document QA
|
@@ -52,6 +55,7 @@ async def perform_document_qa(
|
|
52 |
except Exception as e:
|
53 |
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
54 |
|
|
|
55 |
@app.post("/pdfUpload/", description=description)
|
56 |
async def load_file(
|
57 |
file: UploadFile = File(...),
|
@@ -61,25 +65,26 @@ async def load_file(
|
|
61 |
# Read the uploaded file as bytes
|
62 |
contents = await file.read()
|
63 |
|
64 |
-
#
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
# Perform
|
68 |
answers_dict = {}
|
69 |
for question in questions.split(','):
|
70 |
-
result =
|
71 |
-
image,
|
72 |
-
question.strip()
|
73 |
-
)
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
|
78 |
# Format the question as a string without extra characters
|
79 |
formatted_question = question.strip("[]")
|
80 |
|
81 |
-
answers_dict[formatted_question] =
|
82 |
|
83 |
return answers_dict
|
84 |
except Exception as e:
|
85 |
-
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
|
|
1 |
+
import fitz
|
2 |
from fastapi import FastAPI, File, UploadFile, Form
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from transformers import pipeline
|
|
|
9 |
|
10 |
# Use a pipeline as a high-level helper
|
11 |
nlp_qa = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
12 |
+
# Use a pipeline as a high-level helper for NER
|
13 |
+
nlp_ner = pipeline("ner", model="microsoft/layoutlm-base-ner")
|
14 |
|
15 |
description = """
|
16 |
## Image-based Document QA
|
|
|
55 |
except Exception as e:
|
56 |
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
57 |
|
58 |
+
|
59 |
@app.post("/pdfUpload/", description=description)
|
60 |
async def load_file(
|
61 |
file: UploadFile = File(...),
|
|
|
65 |
# Read the uploaded file as bytes
|
66 |
contents = await file.read()
|
67 |
|
68 |
+
# Extract text from the PDF using PyMuPDF (fitz)
|
69 |
+
pdf_document = fitz.open("file.pdf", pdf_bytes=contents)
|
70 |
+
text_content = ""
|
71 |
+
for page_num in range(pdf_document.page_count):
|
72 |
+
page = pdf_document[page_num]
|
73 |
+
text_content += page.get_text()
|
74 |
|
75 |
+
# Perform named entity recognition for each question using LayoutLM-based NER
|
76 |
answers_dict = {}
|
77 |
for question in questions.split(','):
|
78 |
+
result = nlp_ner(text_content, question.strip())
|
|
|
|
|
|
|
79 |
|
80 |
+
# Extract the named entity from the result
|
81 |
+
named_entity = result[0]['word'] if result else "Not Found"
|
82 |
|
83 |
# Format the question as a string without extra characters
|
84 |
formatted_question = question.strip("[]")
|
85 |
|
86 |
+
answers_dict[formatted_question] = named_entity
|
87 |
|
88 |
return answers_dict
|
89 |
except Exception as e:
|
90 |
+
return JSONResponse(content=f"Error processing PDF file: {str(e)}", status_code=500)
|