Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -21,6 +21,7 @@ app.add_middleware(
|
|
21 |
)
|
22 |
|
23 |
nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut")
|
|
|
24 |
|
25 |
description = """
|
26 |
## Image-based Document QA
|
@@ -65,8 +66,8 @@ async def perform_document_qa(
|
|
65 |
except Exception as e:
|
66 |
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
67 |
|
68 |
-
@app.post("/
|
69 |
-
async def
|
70 |
file: UploadFile = File(...),
|
71 |
questions: str = Form(...),
|
72 |
):
|
@@ -74,50 +75,28 @@ async def pdf_question_answering(
|
|
74 |
# Read the uploaded file as bytes
|
75 |
contents = await file.read()
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Initialize an empty list to store image bytes
|
83 |
-
images = []
|
84 |
-
|
85 |
-
# Use PyMuPDF to process the PDF and convert each page to an image
|
86 |
-
pdf_document = fitz.open(temp_pdf_path)
|
87 |
-
|
88 |
-
for page_num in range(pdf_document.page_count):
|
89 |
-
page = pdf_document.load_page(page_num)
|
90 |
-
print(f"Converting page {page_num + 1} to image...")
|
91 |
-
|
92 |
-
# Convert the page to an image
|
93 |
-
image = Image.frombytes("RGB", page.get_size(), page.get_pixmap().samples)
|
94 |
-
|
95 |
-
# Convert the image to bytes
|
96 |
-
img_byte_array = BytesIO()
|
97 |
-
image.save(img_byte_array, format='PNG')
|
98 |
-
images.append(img_byte_array.getvalue())
|
99 |
-
|
100 |
-
# Perform document question answering for each image
|
101 |
answers_dict = {}
|
102 |
-
for
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
question.strip()
|
108 |
-
)
|
109 |
-
answer = result[0]['answer']
|
110 |
-
formatted_question = f"{question.strip('[]')} (Page {idx + 1})"
|
111 |
-
answers_dict[formatted_question] = answer
|
112 |
-
|
113 |
-
# Delete the temporary PDF file
|
114 |
-
temp_pdf.close()
|
115 |
-
os.remove(temp_pdf_path)
|
116 |
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
-
return JSONResponse(content=f"Error processing
|
121 |
|
122 |
# Set up CORS middleware
|
123 |
origins = ["*"] # or specify your list of allowed origins
|
|
|
21 |
)
|
22 |
|
23 |
nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut")
|
24 |
+
nlp_qa_v2 = pipeline("document-question-answering", model="fxmarty/tiny-doc-qa-vision-encoder-decoder")
|
25 |
|
26 |
description = """
|
27 |
## Image-based Document QA
|
|
|
66 |
except Exception as e:
|
67 |
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
68 |
|
69 |
+
@app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.")
|
70 |
+
async def perform_document_qa(
|
71 |
file: UploadFile = File(...),
|
72 |
questions: str = Form(...),
|
73 |
):
|
|
|
75 |
# Read the uploaded file as bytes
|
76 |
contents = await file.read()
|
77 |
|
78 |
+
# Open the image using PIL
|
79 |
+
image = Image.open(BytesIO(contents))
|
80 |
+
|
81 |
+
# Perform document question answering for each question using LayoutLMv2-based model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
answers_dict = {}
|
83 |
+
for question in questions.split(','):
|
84 |
+
result = nlp_qa_v2(
|
85 |
+
image,
|
86 |
+
question.strip()
|
87 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Access the 'answer' key from the first item in the result list
|
90 |
+
answer = result[0]['answer']
|
91 |
+
|
92 |
+
# Format the question as a string without extra characters
|
93 |
+
formatted_question = question.strip("[]")
|
94 |
|
95 |
+
answers_dict[formatted_question] = answer
|
96 |
+
|
97 |
+
return answers_dict
|
98 |
except Exception as e:
|
99 |
+
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
|
100 |
|
101 |
# Set up CORS middleware
|
102 |
origins = ["*"] # or specify your list of allowed origins
|