Spaces:
Runtime error
Runtime error
File size: 16,671 Bytes
878170e 8373c11 5c98ca3 2498003 5c98ca3 8373c11 2498003 5c98ca3 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 2498003 5c98ca3 8373c11 5c98ca3 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 5c98ca3 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 2498003 8373c11 5c98ca3 2498003 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 2498003 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 2498003 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 8373c11 5c98ca3 2498003 8373c11 5c98ca3 8373c11 5c98ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
title: LanguageBind
emoji: ⚡
colorFrom: pink
colorTo: blue
sdk: gradio
pinned: false
---
<p align="center">
<img src="assets/logo.jpg" width="350" style="margin-bottom: 0.2;"/>
<p>
<h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2>
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2>
<!--
<p align="center">
📖 <a href="https://arxiv.org/pdf/2310.01852.pdf">Paper</a>
 | 
🤗<a href="https://huggingface.co/spaces/LanguageBind/LanguageBind">Demo</a>
  |  
🤖 <a href="https://github.com/PKU-YuanGroup/LanguageBind/tree/main#-api">API</a>
  |  
📄<a href="https://github.com/PKU-YuanGroup/LanguageBind#%EF%B8%8F-training--validating">Instruction</a>
 |
💥<a href="https://github.com/PKU-YuanGroup/LanguageBind#-vidal-10m">Datasets</a>
</p>
-->
[](https://huggingface.co/spaces/LanguageBind/LanguageBind)
[](https://arxiv.org/abs/2310.01852)
[](https://zhuanlan.zhihu.com/p/660567767)


[](https://paperswithcode.com/sota/zero-shot-scene-classification-unified?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-classification-unified-classes-on?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-environment-sound-classification-on-1?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-text-to-audio-retrieval-on-clotho?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-video-retrieval-on-msvd?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-video-retrieval-on-msr-vtt?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-video-retrieval-on-activitynet?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-video-retrieval-on-didemo?p=languagebind-extending-video-language)
[](https://paperswithcode.com/sota/zero-shot-action-recognition-on-kinetics?p=languagebind-extending-video-language)
## 📰 News
* **[2023.10.14]** 😱 LanguageBind-Video achieves **state-of-the-art (SOTA) performance on 4 datasets**, checking our ✨[results](#video-language)! The checkpoint **have updated** on Huggingface Model Hub!
* **[2023.10.12]** 👀 We are training a **stronger LanguageBind-Video** model. The checkpoint will also be updated on Huggingface Model Hub soon.
* **[2023.10.10]** 🎉 We updated the **LanguageBind-Audio** to exceed ImageBind by **16.2%** on the ESC-50 dataset. Sample data can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described.
* **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind).
* **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates.
## 😮 Highlights
### 💡 High performance, but NO intermediate modality required
LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics.
* The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities.
### ⚡️ A multimodal, fully aligned and voluminous dataset
We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities.
* The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language.
### 🔥 Multi-view enhanced description for training
We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language.
<p align="center">
<img src="assets/languagebind.jpg" width=100%>
</p>
<p align="center">
<img src="assets/iclr_dataset_sample.jpg" width=99%>
</p>
## 🤗 Demo
* **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind.
```bash
python gradio_app.py
```
* **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image.
<p align="center">
<img src="assets/demo.png" width=100%>
</p>
## 🚀 Main Results
### Video-Language
LanguageBind achieves **state-of-the-art (SOTA) performance on four datasets**, surpassing InterVideo by 1.9% on MSR-VTT, 8.8% on MSVD, 6.3% on DiDeMo, and 4.4% on ActivityNet. It is worth noting that InterVideo employs more extensive training data, signifying that LanguageBind represents an efficient pretraining method.
<p align="center">
<img src="assets/result1.jpg" width=80%>
</p>
### Multiple Modalities
Video-Language, Infrared-Language, Depth-Language, and Audio-Language zero-shot classification. We report text-to-audio R@1 for the Clotho dataset and top-1 accuracy for the rest of the datasets.
<p align="center">
<img src="assets/result2.jpg" width=70%>
</p>
## 🛠️ Requirements and Installation
* Python >= 3.8
* Pytorch >= 1.13.0
* CUDA Version >= 10.2 (recommend 11.6)
* Install required packages:
```bash
git clone https://github.com/PKU-YuanGroup/LanguageBind
cd LanguageBind
pip install -r requirements.txt
```
## 🤖 API
**We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets.
### Inference for Multi-modal Binding
We have provided some sample datasets in [assets](assets) to quickly see how languagebind works.
```python
import torch
from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer
if __name__ == '__main__':
device = 'cuda:0'
device = torch.device(device)
clip_type = ('thermal', 'image', 'video', 'depth', 'audio')
model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir')
model = model.to(device)
model.eval()
pretrained_ckpt = f'LanguageBind/LanguageBind_Image'
tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir')
modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type}
image = ['assets/image/0.jpg', 'assets/image/1.jpg']
audio = ['assets/audio/0.wav', 'assets/audio/1.wav']
video = ['assets/video/0.mp4', 'assets/video/1.mp4']
depth = ['assets/depth/0.png', 'assets/depth/1.png']
thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg']
language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.']
inputs = {
'image': to_device(modality_transform['image'](image), device),
'video': to_device(modality_transform['video'](video), device),
'audio': to_device(modality_transform['audio'](audio), device),
'depth': to_device(modality_transform['depth'](depth), device),
'thermal': to_device(modality_transform['thermal'](thermal), device),
}
inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
print("Video x Text: \n",
torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy())
print("Image x Text: \n",
torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy())
print("Depth x Text: \n",
torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy())
print("Audio x Text: \n",
torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy())
print("Thermal x Text: \n",
torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy())
```
Then returns the following result.
```bash
Video x Text:
[[9.9999988e-01 1.5560659e-07]
[6.2432008e-08 9.9999988e-01]]
Image x Text:
[[1.0000000e+00 4.0599781e-09]
[1.2165208e-08 1.0000000e+00]]
Depth x Text:
[[9.9952829e-01 4.7178473e-04]
[1.6411507e-01 8.3588487e-01]]
Audio x Text:
[[0.9977429 0.00225709]
[0.00996918 0.99003077]]
Thermal x Text:
[[0.9744922 0.02550781]
[0.3656127 0.6343873 ]]
```
### Emergency zero-shot
Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use.
```python
print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy())
print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy())
print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy())
```
Then, you will get:
```
Video x Audio:
[[1. 0.]
[0. 1.]]
Image x Depth:
[[1. 0.]
[0. 1.]]
Image x Thermal:
[[1. 0.]
[0. 1.]]
```
### Different branches for X-Language task
Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP.
#### Thermal
```python
import torch
from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor
pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal'
model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
thermal_process = LanguageBindThermalProcessor(model.config, tokenizer)
model.eval()
data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt')
with torch.no_grad():
out = model(**data)
print(out.text_embeds @ out.image_embeds.T)
```
#### Depth
```python
import torch
from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor
pretrained_ckpt = 'LanguageBind/LanguageBind_Depth'
model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
depth_process = LanguageBindDepthProcessor(model.config, tokenizer)
model.eval()
data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt')
with torch.no_grad():
out = model(**data)
print(out.text_embeds @ out.image_embeds.T)
```
#### Video
```python
import torch
from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor
pretrained_ckpt = 'LanguageBind/LanguageBind_Video'
model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
video_process = LanguageBindVideoProcessor(model.config, tokenizer)
model.eval()
data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt')
with torch.no_grad():
out = model(**data)
print(out.text_embeds @ out.image_embeds.T)
```
#### Audio
```python
import torch
from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor
pretrained_ckpt = 'LanguageBind/LanguageBind_Audio'
model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
audio_process = LanguageBindAudioProcessor(model.config, tokenizer)
model.eval()
data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt')
with torch.no_grad():
out = model(**data)
print(out.text_embeds @ out.image_embeds.T)
```
#### Image
```python
import torch
from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor
pretrained_ckpt = 'LanguageBind/LanguageBind_Image'
model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./languagebind/cache_dir')
image_process = LanguageBindImageProcessor(model.config, tokenizer)
model.eval()
data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt')
with torch.no_grad():
out = model(**data)
print(out.text_embeds @ out.image_embeds.T)
```
## 💥 VIDAL-10M
The datasets is in [DATASETS.md](DATASETS.md).
## 🗝️ Training & Validating
The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md).
## 👍 Acknowledgement
* [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework.
* [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework.
* [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images.
* [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images.
## 🔒 License
* The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file.
* The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file.
## ✏️ Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
```BibTeX
@misc{zhu2023languagebind,
title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment},
author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan},
year={2023},
eprint={2310.01852},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|