File size: 14,312 Bytes
0d0f07a b24ad56 e99824c 0d0f07a 169869e 17c5755 169869e 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a 17c5755 0d0f07a bdf0a5e 0d0f07a 17c5755 0d0f07a bdf0a5e 0d0f07a 17c5755 0d0f07a 8fb441e 0d0f07a 17c5755 0d0f07a 8fb441e 0d0f07a 169869e 17c5755 169869e cdb0a70 169869e cdb0a70 169869e cdb0a70 169869e cdb0a70 169869e cdb0a70 169869e bdf0a5e 17c5755 bdf0a5e 7088ca8 bdf0a5e 8fb441e 0d0f07a 7b3478d 17c5755 7b3478d 88d7eed 7b3478d 0d0f07a 17c5755 0d0f07a 8fb441e b24ad56 17c5755 b24ad56 336b5df 17c5755 336b5df b24ad56 8fb441e b24ad56 8fb441e b24ad56 7088ca8 17c5755 7088ca8 88d7eed 17c5755 88d7eed 17c5755 88d7eed 17c5755 e99824c 6640785 e99824c 6640785 e99824c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
from gensim.models import Word2Vec
from collections import defaultdict
import os
import tempfile
import pandas as pd
from collections import Counter
def load_all_models():
'''
Load all word2vec models
'''
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
return [archaic, classical, early_roman, hellen, late_roman]
def load_selected_models(selected_models):
'''
Load the selected word2vec models
selected_models: a list of models that should be loaded
'''
models = []
for model in selected_models:
if model == "Early Roman":
model = "early_roman"
elif model == "Late Roman":
model = "late_roman"
elif model == "Hellenistic":
model = "hellen"
model_name = model.lower() + "_cbow"
models.append([model_name, load_word2vec_model(f'models/{model_name}.model')])
return models
def load_word2vec_model(model_path):
'''
Load a word2vec model from a file
model_path: relative path to model files
'''
return Word2Vec.load(model_path)
def get_word_vector(model, word):
'''
Return the word vector of a word
model: word2vec model object
word: word to extract vector from
'''
return model.wv[word]
def iterate_over_words(model):
'''
Iterate over all words in the vocabulary and print their vectors
model: word2vec model object
'''
index = 0
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
print(f'{index} Word: {word}, Vector: {vector}')
index += 1
def model_dictionary(model):
'''
Return the dictionary of the word2vec model
Key is the word and value is the vector of the word
model: word2vec model object
'''
dict = defaultdict(list)
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
dict[word] = vector
return dict
def dot_product(vector_a, vector_b):
'''
Return the dot product of two vectors
vector_a: A list of numbers representing the first vector
vector_b: A list of numbers representing the second vector
Returns:
A single number representing the dot product of the two vectors
'''
return sum(a * b for a, b in zip(vector_a, vector_b))
def magnitude(vector):
'''
Returns the magnitude of a vector
vector: A list of numbers representing the vetor
Returns:
A single number representing the magnitude of the vector.
'''
return sum(x**2 for x in vector) ** 0.5
def cosine_similarity(vector_a, vector_b):
'''
Return the cosine similarity of two vectors
vector_a: A list of numbers representing the first vector
vector_b: A list of numbers representing the second vector
Returns:
A String representing the cosine similarity of the two vectors \
formatted to two decimals.
'''
dot_prod = dot_product(vector_a, vector_b)
mag_a = magnitude(vector_a)
mag_b = magnitude(vector_b)
# Avoid division by zero
if mag_a == 0 or mag_b == 0:
return 0.0
similarity = dot_prod / (mag_a * mag_b)
return "{:.2f}".format(similarity)
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
'''
Return the cosine similarity of two words
word1: The first word as a string.
time_slice_1: The time slice for the first word as a string.
word2: The second word as a string.
time_slice_2: The time slice for the second word as a string.
Returns:
A string representing the cosine similarity of the two words formatted to two decimal places.
'''
time_slice_1 = convert_time_name_to_model(time_slice_1)
time_slice_2 = convert_time_name_to_model(time_slice_2)
if not os.path.exists(f'models/{time_slice_1}.model'):
return
model_1 = load_word2vec_model(f'models/{time_slice_1}.model')
model_2 = load_word2vec_model(f'models/{time_slice_2}.model')
dict_1 = model_dictionary(model_1)
dict_2 = model_dictionary(model_2)
return cosine_similarity(dict_1[word1], dict_2[word2])
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
'''
Return the cosine similarity of one word in two different time slices
word: The word as a string.
time_slice1: The first time slice as a string.
time_slice2: The second time slice as a string.
Returns:
A string representing the cosine similarity of the word in two different time slices formatted to two decimal places.
'''
# Return if path does not exist
if not os.path.exists(f'models/{time_slice1}.model') or not os.path.exists(f'models/{time_slice2}.model'):
return
model1 = load_word2vec_model(f'models/{time_slice1}.model')
model2 = load_word2vec_model(f'models/{time_slice2}.model')
dict1 = model_dictionary(model1)
dict2 = model_dictionary(model2)
return cosine_similarity(dict1[word], dict2[word])
def validate_nearest_neighbours(word, n, models):
'''
Validate the input of the nearest neighbours function
word: The word as a string.
n: The number of nearest neighbours to find as an integer.
models: A list of model names as strings.
Returns:
A boolean value. True if inputs are valid, False otherwise.
'''
if word == '' or n == '' or models == []:
return False
return True
def convert_model_to_time_name(model_name):
'''
Convert the model name to the time slice name
model_name: The model name as a string.
Returns:
A string representing the corresponding time slice name.
'''
if model_name == 'archaic_cbow' or model_name == 'archaic':
return 'Archaic'
elif model_name == 'classical_cbow' or model_name == 'classical':
return 'Classical'
elif model_name == 'early_roman_cbow' or model_name == 'early_roman':
return 'Early Roman'
elif model_name == 'hellen_cbow' or model_name == 'hellen':
return 'Hellenistic'
elif model_name == 'late_roman_cbow' or model_name == 'late_roman':
return 'Late Roman'
def convert_time_name_to_model(time_name):
'''
Convert the time slice name to the model name
time_name -- The time slice name as a string.
Returns:
A string representing the corresponding model name.
'''
if time_name == 'Archaic':
return 'archaic_cbow'
elif time_name == 'Classical':
return 'classical_cbow'
elif time_name == 'Early Roman':
return 'early_roman_cbow'
elif time_name == 'Hellenistic':
return 'hellen_cbow'
elif time_name == 'Late Roman':
return 'late_roman_cbow'
elif time_name == 'classical':
return 'Classical'
elif time_name == 'early_roman':
return 'Early Roman'
elif time_name == 'hellen':
return 'Hellenistic'
elif time_name == 'late_roman':
return 'Late Roman'
elif time_name == 'archaic':
return 'Archaic'
def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
"""
Return the nearest neighbours of a word for the given models
word: the word for which the nearest neighbours are calculated
n: the number of nearest neighbours to return (default: 10)
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
Return: { 'model_name': [(word, cosine_similarity), ...], ... }
"""
nearest_neighbours = {}
# Iterate over models and compute nearest neighbours
for model in models:
model_neighbours = []
model_name = convert_model_to_time_name(model[0])
model = model[1]
vector_1 = get_word_vector(model, target_word)
# Iterate over all words of the model
for word, index in model.wv.key_to_index.items():
vector_2 = get_word_vector(model, word)
cosine_sim = cosine_similarity(vector_1, vector_2)
# If the list of nearest neighbours is not full yet, add the current word
if len(model_neighbours) < n:
model_neighbours.append((word, cosine_sim))
else:
# If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
smallest_neighbour = min(model_neighbours, key=lambda x: x[1])
if cosine_sim > smallest_neighbour[1]:
model_neighbours.remove(smallest_neighbour)
model_neighbours.append((word, cosine_sim))
# Sort the nearest neighbours by cosine similarity
model_neighbours = sorted(model_neighbours, key=lambda x: x[1], reverse=True)
# Add the model name and the nearest neighbours to the dictionary
nearest_neighbours[model_name] = model_neighbours
return nearest_neighbours
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
'''
Return the vectors of the nearest neighbours of a word
word: the word for which the nearest neighbours are calculated
time_slice_model: the word2vec model of the time slice of the input word
n: the number of nearest neighbours to return (default: 15)
Return: list of tuples with the word, the time slice, the vector, and the cosine similarity
of the nearest neighbours
'''
model_name = convert_model_to_time_name(time_slice_model)
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
vector_1 = get_word_vector(time_slice_model, word)
nearest_neighbours = []
for word, index in time_slice_model.wv.key_to_index.items():
print(word)
vector_2 = get_word_vector(time_slice_model, word)
cosine_sim = cosine_similarity(vector_1, vector_2)
if len(nearest_neighbours) < n:
nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
else:
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[3])
if cosine_sim > smallest_neighbour[3]:
nearest_neighbours.remove(smallest_neighbour)
nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
return sorted(nearest_neighbours, key=lambda x: x[3], reverse=True)
def write_to_file(data):
'''
Write the data to a file
data: the data to be written to the file
Return: the path to the temporary file
'''
# Create random tmp file name
temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
os.close(temp_file_descriptor)
# Write data to the temporary file
with open(temp_file_path, 'w') as temp_file:
temp_file.write(str(data))
return temp_file_path
def store_df_in_temp_file(all_dfs):
'''
Store the dataframes in a temporary file
all_dfs: list of tuples with the name of the time slice and the dataframe
Return: the path to the temporary Excel file
'''
# Define directory for temporary files
temp_dir = "./downloads/nn"
# Create the directory if it doesn't exist
os.makedirs(temp_dir, exist_ok=True)
# Create random temporary file name
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)
# Concatenate all dataframes
df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])
# Create an ExcelWriter object
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
# Create a new sheet
worksheet = writer.book.add_worksheet('Results')
start_row = 0
for model, df in all_dfs:
worksheet.write(start_row, 0, f"Model: {model}")
df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
start_row += df.shape[0] + 3 # Add some space between models
return temp_file_path
def check_word_in_models(word):
'''
Check in which models a word occurs
word: the word to check
Return: list of model names where the word occurs
'''
all_models = load_all_models()
eligible_models = []
for model in all_models:
model_name = convert_time_name_to_model(model[0])
model = model[1]
if word in model.wv.key_to_index:
eligible_models.append(model_name)
return eligible_models
def count_lemmas(directory):
'''
Create a Counter with all words and their occurrences for all models
directory: the directory containing the text files for the models
Return: a dictionary where keys are model names and values are Counters of word occurrences
'''
lemma_count_dict = {}
for file in os.listdir(directory):
model_name = file.split('.')[0].replace('_', ' ').capitalize()
if len(model_name.split()) == 2:
# Also capitalize second part of model name
model_name = ' '.join([word.capitalize() for word in model_name.split()])
if file.endswith(".txt"):
with open(os.path.join(directory, file), 'r', encoding='utf-8') as f:
text = f.read()
words = text.split()
lemma_count_dict[model_name] = Counter(words)
return lemma_count_dict
|