removed forms for first 2 tabs and used cache to make program faster
Browse files- app.py +20 -12
- autocomplete.py +58 -1
- corpora/compass_filtered_v2.pkl.gz +3 -0
- word2vec.py +5 -5
app.py
CHANGED
@@ -21,6 +21,11 @@ def load_lsj_dict():
|
|
21 |
def load_all_models_words():
|
22 |
return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
# Load compressed word list
|
25 |
all_models_words = load_all_models_words()
|
26 |
|
@@ -28,6 +33,9 @@ all_models_words = load_all_models_words()
|
|
28 |
# Prepare lsj dictionary
|
29 |
lemma_dict = load_lsj_dict()
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
# Horizontal menu
|
33 |
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
|
@@ -41,13 +49,13 @@ if active_tab == "Nearest neighbours":
|
|
41 |
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
42 |
all_models_words = load_all_models_words()
|
43 |
|
44 |
-
with st.
|
45 |
st.markdown("## Nearest Neighbours")
|
46 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
47 |
if len(target_word) > 0:
|
48 |
target_word = target_word[0]
|
49 |
|
50 |
-
eligible_models =
|
51 |
|
52 |
models = st.multiselect(
|
53 |
"Select models to search for neighbours",
|
@@ -55,8 +63,8 @@ if active_tab == "Nearest neighbours":
|
|
55 |
)
|
56 |
n = st.slider("Number of neighbours", 1, 50, 15)
|
57 |
|
58 |
-
nearest_neighbours_button = st.
|
59 |
-
|
60 |
if nearest_neighbours_button:
|
61 |
if validate_nearest_neighbours(target_word, n, models) == False:
|
62 |
st.error('Please fill in all fields')
|
@@ -98,11 +106,11 @@ if active_tab == "Nearest neighbours":
|
|
98 |
|
99 |
# Cosine similarity tab
|
100 |
elif active_tab == "Cosine similarity":
|
101 |
-
eligible_models_1 = []
|
102 |
-
eligible_models_2 = []
|
103 |
all_models_words = load_all_models_words()
|
104 |
|
105 |
-
with st.
|
|
|
|
|
106 |
st.markdown("## Cosine similarity")
|
107 |
col1, col2 = st.columns(2)
|
108 |
col3, col4 = st.columns(2)
|
@@ -110,24 +118,24 @@ elif active_tab == "Cosine similarity":
|
|
110 |
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
111 |
if len(word_1) > 0:
|
112 |
word_1 = word_1[0]
|
113 |
-
eligible_models_1 =
|
114 |
|
115 |
-
|
|
|
116 |
|
117 |
-
time_slice_1 = st.selectbox("Time slice word 1", eligible_models_1)
|
118 |
|
119 |
with st.container():
|
120 |
with col3:
|
121 |
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
|
122 |
if len(word_2) > 0:
|
123 |
word_2 = word_2[0]
|
124 |
-
eligible_models_2 =
|
125 |
|
126 |
with col4:
|
127 |
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
|
128 |
|
129 |
# Create button for calculating cosine similarity
|
130 |
-
cosine_similarity_button = st.
|
131 |
|
132 |
# If the button is clicked, execute calculation
|
133 |
if cosine_similarity_button:
|
|
|
21 |
def load_all_models_words():
|
22 |
return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)
|
23 |
|
24 |
+
|
25 |
+
@st.cache_data
|
26 |
+
def load_models_for_word_dict():
|
27 |
+
return word_in_models_dict('corpora/compass_filtered.pkl.gz')
|
28 |
+
|
29 |
# Load compressed word list
|
30 |
all_models_words = load_all_models_words()
|
31 |
|
|
|
33 |
# Prepare lsj dictionary
|
34 |
lemma_dict = load_lsj_dict()
|
35 |
|
36 |
+
# Load dictionary with words as keys and eligible models as values
|
37 |
+
models_for_word_dict = load_models_for_word_dict()
|
38 |
+
|
39 |
|
40 |
# Horizontal menu
|
41 |
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
|
|
|
49 |
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
50 |
all_models_words = load_all_models_words()
|
51 |
|
52 |
+
with st.container():
|
53 |
st.markdown("## Nearest Neighbours")
|
54 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
55 |
if len(target_word) > 0:
|
56 |
target_word = target_word[0]
|
57 |
|
58 |
+
eligible_models = models_for_word_dict[target_word]
|
59 |
|
60 |
models = st.multiselect(
|
61 |
"Select models to search for neighbours",
|
|
|
63 |
)
|
64 |
n = st.slider("Number of neighbours", 1, 50, 15)
|
65 |
|
66 |
+
nearest_neighbours_button = st.button("Find nearest neighbours")
|
67 |
+
|
68 |
if nearest_neighbours_button:
|
69 |
if validate_nearest_neighbours(target_word, n, models) == False:
|
70 |
st.error('Please fill in all fields')
|
|
|
106 |
|
107 |
# Cosine similarity tab
|
108 |
elif active_tab == "Cosine similarity":
|
|
|
|
|
109 |
all_models_words = load_all_models_words()
|
110 |
|
111 |
+
with st.container():
|
112 |
+
eligible_models_1 = []
|
113 |
+
eligible_models_2 = []
|
114 |
st.markdown("## Cosine similarity")
|
115 |
col1, col2 = st.columns(2)
|
116 |
col3, col4 = st.columns(2)
|
|
|
118 |
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
119 |
if len(word_1) > 0:
|
120 |
word_1 = word_1[0]
|
121 |
+
eligible_models_1 = models_for_word_dict[word_1]
|
122 |
|
123 |
+
with col2:
|
124 |
+
time_slice_1 = st.selectbox("Time slice word 1", options = eligible_models_1)
|
125 |
|
|
|
126 |
|
127 |
with st.container():
|
128 |
with col3:
|
129 |
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
|
130 |
if len(word_2) > 0:
|
131 |
word_2 = word_2[0]
|
132 |
+
eligible_models_2 = models_for_word_dict[word_2]
|
133 |
|
134 |
with col4:
|
135 |
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
|
136 |
|
137 |
# Create button for calculating cosine similarity
|
138 |
+
cosine_similarity_button = st.button("Calculate cosine similarity")
|
139 |
|
140 |
# If the button is clicked, execute calculation
|
141 |
if cosine_similarity_button:
|
autocomplete.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import pickle
|
2 |
import gzip
|
|
|
3 |
|
4 |
|
5 |
def get_unique_words(corpus_filename):
|
@@ -34,4 +35,60 @@ def get_autocomplete(input_word=" ", all_words=" "):
|
|
34 |
"""
|
35 |
Get a list of words that start with the input word
|
36 |
"""
|
37 |
-
return [word for word in all_words if word.startswith(input_word)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pickle
|
2 |
import gzip
|
3 |
+
from word2vec import *
|
4 |
|
5 |
|
6 |
def get_unique_words(corpus_filename):
|
|
|
35 |
"""
|
36 |
Get a list of words that start with the input word
|
37 |
"""
|
38 |
+
return [word for word in all_words if word.startswith(input_word)]
|
39 |
+
|
40 |
+
|
41 |
+
def custom_sort(item):
|
42 |
+
if item.isdigit():
|
43 |
+
print(item)
|
44 |
+
return (2, item) # Place numbers last
|
45 |
+
else:
|
46 |
+
return (0, item.lower())
|
47 |
+
|
48 |
+
|
49 |
+
def order_compressed_list(filename):
|
50 |
+
"""
|
51 |
+
Order the compressed list of words alphabetically and put numbers at the end
|
52 |
+
"""
|
53 |
+
# Strip extension from filename
|
54 |
+
filename_raw = filename.split('.')[0]
|
55 |
+
|
56 |
+
with gzip.open(filename, 'rb') as file:
|
57 |
+
words = pickle.load(file)
|
58 |
+
|
59 |
+
# Sort the words
|
60 |
+
sorted_words = sorted(words, key=custom_sort)
|
61 |
+
|
62 |
+
return sorted_words
|
63 |
+
|
64 |
+
|
65 |
+
def read_compressed_list(filename):
|
66 |
+
"""
|
67 |
+
Read the compressed list of words
|
68 |
+
"""
|
69 |
+
with gzip.open(filename, 'rb') as file:
|
70 |
+
print(pickle.load(file))
|
71 |
+
|
72 |
+
|
73 |
+
def word_in_models_dict(words_file):
|
74 |
+
"""
|
75 |
+
Create a dictionary with words as keys and models in which the word occurs as values
|
76 |
+
"""
|
77 |
+
with gzip.open(words_file, 'rb') as file:
|
78 |
+
words = pickle.load(file)
|
79 |
+
|
80 |
+
models = load_all_models()
|
81 |
+
|
82 |
+
word_models = {word: [] for word in words} # Initialize word_models dictionary with empty lists
|
83 |
+
|
84 |
+
for model in models:
|
85 |
+
model_name = convert_model_to_time_name(model[0])
|
86 |
+
for word in words:
|
87 |
+
if word in model[1].wv.key_to_index:
|
88 |
+
word_models[word].append(model_name)
|
89 |
+
|
90 |
+
return word_models
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
corpora/compass_filtered_v2.pkl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32818a420a9458c7e8be4919f78a2623ffca704cd93340b05b4825f209c01b61
|
3 |
+
size 127623
|
word2vec.py
CHANGED
@@ -161,15 +161,15 @@ def convert_model_to_time_name(model_name):
|
|
161 |
'''
|
162 |
Convert the model name to the time slice name
|
163 |
'''
|
164 |
-
if model_name == 'archaic_cbow':
|
165 |
return 'Archaic'
|
166 |
-
elif model_name == 'classical_cbow':
|
167 |
return 'Classical'
|
168 |
-
elif model_name == 'early_roman_cbow':
|
169 |
return 'Early Roman'
|
170 |
-
elif model_name == 'hellen_cbow':
|
171 |
return 'Hellenistic'
|
172 |
-
elif model_name == 'late_roman_cbow':
|
173 |
return 'Late Roman'
|
174 |
|
175 |
|
|
|
161 |
'''
|
162 |
Convert the model name to the time slice name
|
163 |
'''
|
164 |
+
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
165 |
return 'Archaic'
|
166 |
+
elif model_name == 'classical_cbow' or model_name == 'classical':
|
167 |
return 'Classical'
|
168 |
+
elif model_name == 'early_roman_cbow' or model_name == 'early_roman':
|
169 |
return 'Early Roman'
|
170 |
+
elif model_name == 'hellen_cbow' or model_name == 'hellen':
|
171 |
return 'Hellenistic'
|
172 |
+
elif model_name == 'late_roman_cbow' or model_name == 'late_roman':
|
173 |
return 'Late Roman'
|
174 |
|
175 |
|