Made output of nearest neighbours downloadable
Browse files- .gitignore +1 -0
- app.py +20 -4
- word2vec.py +15 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
downloads
|
app.py
CHANGED
@@ -39,8 +39,7 @@ if active_tab == "Nearest neighbours":
|
|
39 |
elif time_slice == 'Late Roman':
|
40 |
time_slice = 'late_roman'
|
41 |
|
42 |
-
time_slice = time_slice.lower() + "_cbow"
|
43 |
-
|
44 |
|
45 |
|
46 |
# Check if all fields are filled in
|
@@ -56,8 +55,25 @@ if active_tab == "Nearest neighbours":
|
|
56 |
nearest_neighbours,
|
57 |
columns=["Word", "Time slice", "Similarity"],
|
58 |
index = range(1, len(nearest_neighbours) + 1)
|
59 |
-
)
|
60 |
-
st.table(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
# Cosine similarity tab
|
|
|
39 |
elif time_slice == 'Late Roman':
|
40 |
time_slice = 'late_roman'
|
41 |
|
42 |
+
time_slice = time_slice.lower() + "_cbow"
|
|
|
43 |
|
44 |
|
45 |
# Check if all fields are filled in
|
|
|
55 |
nearest_neighbours,
|
56 |
columns=["Word", "Time slice", "Similarity"],
|
57 |
index = range(1, len(nearest_neighbours) + 1)
|
58 |
+
)
|
59 |
+
st.table(df)
|
60 |
+
|
61 |
+
|
62 |
+
# Store content in a temporary file
|
63 |
+
tmp_file = store_df_in_temp_file(df)
|
64 |
+
|
65 |
+
# Open the temporary file and read its content
|
66 |
+
with open(tmp_file, "rb") as file:
|
67 |
+
file_byte = file.read()
|
68 |
+
|
69 |
+
# Create download button
|
70 |
+
st.download_button(
|
71 |
+
"Download results",
|
72 |
+
data=file_byte,
|
73 |
+
file_name = f'nearest_neighbours_{word}_{time_slice}.xlsx',
|
74 |
+
mime='application/octet-stream'
|
75 |
+
)
|
76 |
+
|
77 |
|
78 |
|
79 |
# Cosine similarity tab
|
word2vec.py
CHANGED
@@ -2,6 +2,7 @@ from gensim.models import Word2Vec
|
|
2 |
from collections import defaultdict
|
3 |
import os
|
4 |
import tempfile
|
|
|
5 |
|
6 |
|
7 |
def load_all_models():
|
@@ -249,6 +250,20 @@ def write_to_file(data):
|
|
249 |
return temp_file_path
|
250 |
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
def main():
|
253 |
# model = load_word2vec_model('models/archaic_cbow.model')
|
254 |
# archaic_cbow_dict = model_dictionary(model)
|
|
|
2 |
from collections import defaultdict
|
3 |
import os
|
4 |
import tempfile
|
5 |
+
import pandas as pd
|
6 |
|
7 |
|
8 |
def load_all_models():
|
|
|
250 |
return temp_file_path
|
251 |
|
252 |
|
253 |
+
def store_df_in_temp_file(df):
|
254 |
+
'''
|
255 |
+
Store the dataframe in a temporary file
|
256 |
+
'''
|
257 |
+
# Create random tmp file name
|
258 |
+
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir="./downloads/nn")
|
259 |
+
|
260 |
+
# Write data to the temporary file
|
261 |
+
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
|
262 |
+
df.to_excel(writer, index=False)
|
263 |
+
|
264 |
+
return temp_file_path
|
265 |
+
|
266 |
+
|
267 |
def main():
|
268 |
# model = load_word2vec_model('models/archaic_cbow.model')
|
269 |
# archaic_cbow_dict = model_dictionary(model)
|