improved code quality
Browse files- word2vec.py +99 -168
word2vec.py
CHANGED
@@ -1,16 +1,9 @@
|
|
1 |
from gensim.models import Word2Vec
|
2 |
from collections import defaultdict
|
3 |
import os
|
4 |
-
import pickle
|
5 |
import tempfile
|
6 |
import pandas as pd
|
7 |
-
from sklearn.preprocessing import StandardScaler
|
8 |
-
from sklearn.manifold import TSNE
|
9 |
-
import plotly.express as px
|
10 |
from collections import Counter
|
11 |
-
import streamlit as st
|
12 |
-
|
13 |
-
|
14 |
|
15 |
|
16 |
def load_all_models():
|
@@ -30,6 +23,8 @@ def load_all_models():
|
|
30 |
def load_selected_models(selected_models):
|
31 |
'''
|
32 |
Load the selected word2vec models
|
|
|
|
|
33 |
'''
|
34 |
models = []
|
35 |
for model in selected_models:
|
@@ -48,6 +43,8 @@ def load_selected_models(selected_models):
|
|
48 |
def load_word2vec_model(model_path):
|
49 |
'''
|
50 |
Load a word2vec model from a file
|
|
|
|
|
51 |
'''
|
52 |
return Word2Vec.load(model_path)
|
53 |
|
@@ -55,6 +52,9 @@ def load_word2vec_model(model_path):
|
|
55 |
def get_word_vector(model, word):
|
56 |
'''
|
57 |
Return the word vector of a word
|
|
|
|
|
|
|
58 |
'''
|
59 |
return model.wv[word]
|
60 |
|
@@ -62,6 +62,8 @@ def get_word_vector(model, word):
|
|
62 |
def iterate_over_words(model):
|
63 |
'''
|
64 |
Iterate over all words in the vocabulary and print their vectors
|
|
|
|
|
65 |
'''
|
66 |
index = 0
|
67 |
for word, index in model.wv.key_to_index.items():
|
@@ -74,6 +76,8 @@ def model_dictionary(model):
|
|
74 |
'''
|
75 |
Return the dictionary of the word2vec model
|
76 |
Key is the word and value is the vector of the word
|
|
|
|
|
77 |
'''
|
78 |
dict = defaultdict(list)
|
79 |
for word, index in model.wv.key_to_index.items():
|
@@ -86,13 +90,24 @@ def model_dictionary(model):
|
|
86 |
def dot_product(vector_a, vector_b):
|
87 |
'''
|
88 |
Return the dot product of two vectors
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
'''
|
90 |
return sum(a * b for a, b in zip(vector_a, vector_b))
|
91 |
|
92 |
|
93 |
def magnitude(vector):
|
94 |
'''
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
'''
|
97 |
return sum(x**2 for x in vector) ** 0.5
|
98 |
|
@@ -100,6 +115,13 @@ def magnitude(vector):
|
|
100 |
def cosine_similarity(vector_a, vector_b):
|
101 |
'''
|
102 |
Return the cosine similarity of two vectors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
'''
|
104 |
dot_prod = dot_product(vector_a, vector_b)
|
105 |
mag_a = magnitude(vector_a)
|
@@ -116,10 +138,16 @@ def cosine_similarity(vector_a, vector_b):
|
|
116 |
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
117 |
'''
|
118 |
Return the cosine similarity of two words
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
'''
|
120 |
-
# TO DO: MOET NETTER
|
121 |
-
|
122 |
-
# Return if path does not exist
|
123 |
|
124 |
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
125 |
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
@@ -139,6 +167,14 @@ def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
|
139 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
140 |
'''
|
141 |
Return the cosine similarity of one word in two different time slices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
'''
|
143 |
|
144 |
# Return if path does not exist
|
@@ -158,6 +194,14 @@ def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
158 |
def validate_nearest_neighbours(word, n, models):
|
159 |
'''
|
160 |
Validate the input of the nearest neighbours function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
'''
|
162 |
if word == '' or n == '' or models == []:
|
163 |
return False
|
@@ -167,6 +211,11 @@ def validate_nearest_neighbours(word, n, models):
|
|
167 |
def convert_model_to_time_name(model_name):
|
168 |
'''
|
169 |
Convert the model name to the time slice name
|
|
|
|
|
|
|
|
|
|
|
170 |
'''
|
171 |
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
172 |
return 'Archaic'
|
@@ -183,6 +232,12 @@ def convert_model_to_time_name(model_name):
|
|
183 |
def convert_time_name_to_model(time_name):
|
184 |
'''
|
185 |
Convert the time slice name to the model name
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
'''
|
187 |
if time_name == 'Archaic':
|
188 |
return 'archaic_cbow'
|
@@ -205,52 +260,6 @@ def convert_time_name_to_model(time_name):
|
|
205 |
elif time_name == 'archaic':
|
206 |
return 'Archaic'
|
207 |
|
208 |
-
def get_nearest_neighbours2(word, n=10, models=load_all_models()):
|
209 |
-
'''
|
210 |
-
Return the nearest neighbours of a word
|
211 |
-
|
212 |
-
word: the word for which the nearest neighbours are calculated
|
213 |
-
time_slice_model: the word2vec model of the time slice of the input word
|
214 |
-
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
|
215 |
-
n: the number of nearest neighbours to return (default: 10)
|
216 |
-
|
217 |
-
Return: list of tuples with the word, the time slice and
|
218 |
-
the cosine similarity of the nearest neighbours
|
219 |
-
'''
|
220 |
-
|
221 |
-
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
222 |
-
vector_1 = get_word_vector(time_slice_model, word)
|
223 |
-
nearest_neighbours = []
|
224 |
-
|
225 |
-
# Iterate over all models
|
226 |
-
for model in models:
|
227 |
-
model_name = model[0]
|
228 |
-
time_name = convert_model_to_time_name(model_name)
|
229 |
-
model = model[1]
|
230 |
-
|
231 |
-
# Iterate over all words of the model
|
232 |
-
for word, index in model.wv.key_to_index.items():
|
233 |
-
|
234 |
-
# Vector of the current word
|
235 |
-
vector_2 = get_word_vector(model, word)
|
236 |
-
|
237 |
-
# Calculate the cosine similarity between current word and input word
|
238 |
-
cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
|
239 |
-
|
240 |
-
# If the list of nearest neighbours is not full yet, add the current word
|
241 |
-
if len(nearest_neighbours) < n:
|
242 |
-
nearest_neighbours.append((word, time_name, cosine_similarity_vectors))
|
243 |
-
|
244 |
-
# If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
|
245 |
-
else:
|
246 |
-
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
|
247 |
-
if cosine_similarity_vectors > smallest_neighbour[2]:
|
248 |
-
nearest_neighbours.remove(smallest_neighbour)
|
249 |
-
nearest_neighbours.append((word, time_name, cosine_similarity_vectors))
|
250 |
-
|
251 |
-
|
252 |
-
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
|
253 |
-
|
254 |
|
255 |
def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
256 |
"""
|
@@ -298,9 +307,16 @@ def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
|
298 |
|
299 |
|
300 |
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
model_name = convert_model_to_time_name(time_slice_model)
|
305 |
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
306 |
vector_1 = get_word_vector(time_slice_model, word)
|
@@ -327,6 +343,10 @@ def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
|
327 |
def write_to_file(data):
|
328 |
'''
|
329 |
Write the data to a file
|
|
|
|
|
|
|
|
|
330 |
'''
|
331 |
# Create random tmp file name
|
332 |
temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
|
@@ -342,7 +362,11 @@ def write_to_file(data):
|
|
342 |
|
343 |
def store_df_in_temp_file(all_dfs):
|
344 |
'''
|
345 |
-
Store the
|
|
|
|
|
|
|
|
|
346 |
'''
|
347 |
# Define directory for temporary files
|
348 |
temp_dir = "./downloads/nn"
|
@@ -350,37 +374,34 @@ def store_df_in_temp_file(all_dfs):
|
|
350 |
# Create the directory if it doesn't exist
|
351 |
os.makedirs(temp_dir, exist_ok=True)
|
352 |
|
353 |
-
# Create random
|
354 |
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)
|
355 |
|
356 |
-
|
357 |
# Concatenate all dataframes
|
358 |
df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])
|
359 |
|
360 |
-
|
361 |
# Create an ExcelWriter object
|
362 |
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
|
363 |
# Create a new sheet
|
364 |
worksheet = writer.book.add_worksheet('Results')
|
365 |
|
366 |
-
# Write text before DataFrames
|
367 |
start_row = 0
|
368 |
for model, df in all_dfs:
|
369 |
-
# Write model name as text
|
370 |
worksheet.write(start_row, 0, f"Model: {model}")
|
371 |
-
# Write DataFrame
|
372 |
df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
|
373 |
-
# Update start_row for the next model
|
374 |
start_row += df.shape[0] + 3 # Add some space between models
|
375 |
|
376 |
return temp_file_path
|
377 |
|
378 |
|
379 |
-
|
380 |
def check_word_in_models(word):
|
381 |
-
|
382 |
-
Check in which models a word occurs
|
383 |
-
|
|
|
|
|
|
|
|
|
384 |
all_models = load_all_models()
|
385 |
eligible_models = []
|
386 |
|
@@ -393,75 +414,16 @@ def check_word_in_models(word):
|
|
393 |
|
394 |
return eligible_models
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
def reduce_dimensions_tSNE():
|
399 |
-
'''
|
400 |
-
Reduce the dimensions of the data using t-SNE
|
401 |
-
'''
|
402 |
-
all_models = load_all_models()
|
403 |
-
|
404 |
-
for model in all_models:
|
405 |
-
model_name = model[0]
|
406 |
-
model = model[1]
|
407 |
-
model_dict = model_dictionary(model)
|
408 |
-
|
409 |
-
# Extract vectors and names from model_dict
|
410 |
-
all_vector_names = list(model_dict.keys())
|
411 |
-
all_vectors = list(model_dict.values())
|
412 |
-
|
413 |
-
print('Scaling', model_name)
|
414 |
|
415 |
-
# Scale vectors
|
416 |
-
scaler = StandardScaler()
|
417 |
-
vectors_scaled = scaler.fit_transform(all_vectors)
|
418 |
-
|
419 |
-
print('Fitting', model_name)
|
420 |
-
|
421 |
-
# Make t-SNE model and fit it to the scaled vectors
|
422 |
-
tsne_model = TSNE(n_components=3, random_state=42)
|
423 |
-
tsne_result = tsne_model.fit_transform(vectors_scaled)
|
424 |
-
|
425 |
-
print('Done fitting')
|
426 |
-
|
427 |
-
# Associate the names with the 3D representations
|
428 |
-
result_with_names = [(all_vector_names[i], tsne_result[i]) for i in range(len(all_vector_names))]
|
429 |
-
|
430 |
-
# Store all vectors in /3d_models/{model_name}.model
|
431 |
-
store_3d_model(result_with_names, model_name)
|
432 |
-
|
433 |
|
434 |
-
def
|
435 |
-
|
436 |
-
|
437 |
-
"""
|
438 |
-
output_dir = './3d_models'
|
439 |
-
os.makedirs(output_dir, exist_ok=True)
|
440 |
-
file_path = os.path.join(output_dir, f'{model_name}.model')
|
441 |
-
|
442 |
-
with open(file_path, 'wb') as f:
|
443 |
-
pickle.dump(result_with_names, f)
|
444 |
-
print(f"3D model for {model_name} stored at {file_path}")
|
445 |
-
|
446 |
|
|
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
Print the 3D model data.
|
451 |
-
"""
|
452 |
-
file_path = f'./3d_models/{model_name}.model'
|
453 |
-
|
454 |
-
with open(file_path, 'rb') as f:
|
455 |
-
result_with_names = pickle.load(f)
|
456 |
-
|
457 |
-
for word, vector in result_with_names:
|
458 |
-
print(f'{word}: {vector}')
|
459 |
-
|
460 |
-
|
461 |
-
def count_lemmas(directory):
|
462 |
-
"""
|
463 |
-
Create a Counter with all words and their occurences for all models
|
464 |
-
"""
|
465 |
lemma_count_dict = {}
|
466 |
for file in os.listdir(directory):
|
467 |
model_name = file.split('.')[0].replace('_', ' ').capitalize()
|
@@ -475,34 +437,3 @@ def count_lemmas(directory):
|
|
475 |
lemma_count_dict[model_name] = Counter(words)
|
476 |
|
477 |
return lemma_count_dict
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
def main():
|
482 |
-
# model = load_word2vec_model('models/archaic_cbow.model')
|
483 |
-
# archaic_cbow_dict = model_dictionary(model)
|
484 |
-
|
485 |
-
# score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
|
486 |
-
# print(score)
|
487 |
-
|
488 |
-
|
489 |
-
# archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
|
490 |
-
# classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
|
491 |
-
# early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
|
492 |
-
# hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
|
493 |
-
# late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
494 |
-
|
495 |
-
# models = [archaic, classical, early_roman, hellen, late_roman]
|
496 |
-
# nearest_neighbours = get_nearest_neighbours('πατήρ', 'archaic_cbow', n=5)
|
497 |
-
# print(nearest_neighbours)
|
498 |
-
# vector = get_word_vector(model, 'ἀνήρ')
|
499 |
-
# print(vector)
|
500 |
-
|
501 |
-
# Iterate over all words and print their vectors
|
502 |
-
# iterate_over_words(model)
|
503 |
-
|
504 |
-
print(count_lemmas('lemma_list_raw'))
|
505 |
-
|
506 |
-
|
507 |
-
if __name__ == "__main__":
|
508 |
-
main()
|
|
|
1 |
from gensim.models import Word2Vec
|
2 |
from collections import defaultdict
|
3 |
import os
|
|
|
4 |
import tempfile
|
5 |
import pandas as pd
|
|
|
|
|
|
|
6 |
from collections import Counter
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def load_all_models():
|
|
|
23 |
def load_selected_models(selected_models):
|
24 |
'''
|
25 |
Load the selected word2vec models
|
26 |
+
|
27 |
+
selected_models: a list of models that should be loaded
|
28 |
'''
|
29 |
models = []
|
30 |
for model in selected_models:
|
|
|
43 |
def load_word2vec_model(model_path):
|
44 |
'''
|
45 |
Load a word2vec model from a file
|
46 |
+
|
47 |
+
model_path: relative path to model files
|
48 |
'''
|
49 |
return Word2Vec.load(model_path)
|
50 |
|
|
|
52 |
def get_word_vector(model, word):
|
53 |
'''
|
54 |
Return the word vector of a word
|
55 |
+
|
56 |
+
model: word2vec model object
|
57 |
+
word: word to extract vector from
|
58 |
'''
|
59 |
return model.wv[word]
|
60 |
|
|
|
62 |
def iterate_over_words(model):
|
63 |
'''
|
64 |
Iterate over all words in the vocabulary and print their vectors
|
65 |
+
|
66 |
+
model: word2vec model object
|
67 |
'''
|
68 |
index = 0
|
69 |
for word, index in model.wv.key_to_index.items():
|
|
|
76 |
'''
|
77 |
Return the dictionary of the word2vec model
|
78 |
Key is the word and value is the vector of the word
|
79 |
+
|
80 |
+
model: word2vec model object
|
81 |
'''
|
82 |
dict = defaultdict(list)
|
83 |
for word, index in model.wv.key_to_index.items():
|
|
|
90 |
def dot_product(vector_a, vector_b):
|
91 |
'''
|
92 |
Return the dot product of two vectors
|
93 |
+
|
94 |
+
vector_a: A list of numbers representing the first vector
|
95 |
+
vector_b: A list of numbers representing the second vector
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
A single number representing the dot product of the two vectors
|
99 |
'''
|
100 |
return sum(a * b for a, b in zip(vector_a, vector_b))
|
101 |
|
102 |
|
103 |
def magnitude(vector):
|
104 |
'''
|
105 |
+
Returns the magnitude of a vector
|
106 |
+
|
107 |
+
vector: A list of numbers representing the vetor
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
A single number representing the magnitude of the vector.
|
111 |
'''
|
112 |
return sum(x**2 for x in vector) ** 0.5
|
113 |
|
|
|
115 |
def cosine_similarity(vector_a, vector_b):
|
116 |
'''
|
117 |
Return the cosine similarity of two vectors
|
118 |
+
|
119 |
+
vector_a: A list of numbers representing the first vector
|
120 |
+
vector_b: A list of numbers representing the second vector
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
A String representing the cosine similarity of the two vectors \
|
124 |
+
formatted to two decimals.
|
125 |
'''
|
126 |
dot_prod = dot_product(vector_a, vector_b)
|
127 |
mag_a = magnitude(vector_a)
|
|
|
138 |
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
139 |
'''
|
140 |
Return the cosine similarity of two words
|
141 |
+
|
142 |
+
word1: The first word as a string.
|
143 |
+
time_slice_1: The time slice for the first word as a string.
|
144 |
+
word2: The second word as a string.
|
145 |
+
time_slice_2: The time slice for the second word as a string.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
A string representing the cosine similarity of the two words formatted to two decimal places.
|
149 |
+
|
150 |
'''
|
|
|
|
|
|
|
151 |
|
152 |
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
153 |
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
|
|
167 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
168 |
'''
|
169 |
Return the cosine similarity of one word in two different time slices
|
170 |
+
|
171 |
+
word: The word as a string.
|
172 |
+
time_slice1: The first time slice as a string.
|
173 |
+
time_slice2: The second time slice as a string.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
A string representing the cosine similarity of the word in two different time slices formatted to two decimal places.
|
177 |
+
|
178 |
'''
|
179 |
|
180 |
# Return if path does not exist
|
|
|
194 |
def validate_nearest_neighbours(word, n, models):
|
195 |
'''
|
196 |
Validate the input of the nearest neighbours function
|
197 |
+
|
198 |
+
word: The word as a string.
|
199 |
+
n: The number of nearest neighbours to find as an integer.
|
200 |
+
models: A list of model names as strings.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
A boolean value. True if inputs are valid, False otherwise.
|
204 |
+
|
205 |
'''
|
206 |
if word == '' or n == '' or models == []:
|
207 |
return False
|
|
|
211 |
def convert_model_to_time_name(model_name):
|
212 |
'''
|
213 |
Convert the model name to the time slice name
|
214 |
+
|
215 |
+
model_name: The model name as a string.
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
A string representing the corresponding time slice name.
|
219 |
'''
|
220 |
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
221 |
return 'Archaic'
|
|
|
232 |
def convert_time_name_to_model(time_name):
|
233 |
'''
|
234 |
Convert the time slice name to the model name
|
235 |
+
|
236 |
+
time_name -- The time slice name as a string.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
A string representing the corresponding model name.
|
240 |
+
|
241 |
'''
|
242 |
if time_name == 'Archaic':
|
243 |
return 'archaic_cbow'
|
|
|
260 |
elif time_name == 'archaic':
|
261 |
return 'Archaic'
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
265 |
"""
|
|
|
307 |
|
308 |
|
309 |
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
310 |
+
'''
|
311 |
+
Return the vectors of the nearest neighbours of a word
|
312 |
+
|
313 |
+
word: the word for which the nearest neighbours are calculated
|
314 |
+
time_slice_model: the word2vec model of the time slice of the input word
|
315 |
+
n: the number of nearest neighbours to return (default: 15)
|
316 |
+
|
317 |
+
Return: list of tuples with the word, the time slice, the vector, and the cosine similarity
|
318 |
+
of the nearest neighbours
|
319 |
+
'''
|
320 |
model_name = convert_model_to_time_name(time_slice_model)
|
321 |
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
322 |
vector_1 = get_word_vector(time_slice_model, word)
|
|
|
343 |
def write_to_file(data):
|
344 |
'''
|
345 |
Write the data to a file
|
346 |
+
|
347 |
+
data: the data to be written to the file
|
348 |
+
|
349 |
+
Return: the path to the temporary file
|
350 |
'''
|
351 |
# Create random tmp file name
|
352 |
temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
|
|
|
362 |
|
363 |
def store_df_in_temp_file(all_dfs):
|
364 |
'''
|
365 |
+
Store the dataframes in a temporary file
|
366 |
+
|
367 |
+
all_dfs: list of tuples with the name of the time slice and the dataframe
|
368 |
+
|
369 |
+
Return: the path to the temporary Excel file
|
370 |
'''
|
371 |
# Define directory for temporary files
|
372 |
temp_dir = "./downloads/nn"
|
|
|
374 |
# Create the directory if it doesn't exist
|
375 |
os.makedirs(temp_dir, exist_ok=True)
|
376 |
|
377 |
+
# Create random temporary file name
|
378 |
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)
|
379 |
|
|
|
380 |
# Concatenate all dataframes
|
381 |
df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])
|
382 |
|
|
|
383 |
# Create an ExcelWriter object
|
384 |
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
|
385 |
# Create a new sheet
|
386 |
worksheet = writer.book.add_worksheet('Results')
|
387 |
|
|
|
388 |
start_row = 0
|
389 |
for model, df in all_dfs:
|
|
|
390 |
worksheet.write(start_row, 0, f"Model: {model}")
|
|
|
391 |
df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
|
|
|
392 |
start_row += df.shape[0] + 3 # Add some space between models
|
393 |
|
394 |
return temp_file_path
|
395 |
|
396 |
|
|
|
397 |
def check_word_in_models(word):
|
398 |
+
'''
|
399 |
+
Check in which models a word occurs
|
400 |
+
|
401 |
+
word: the word to check
|
402 |
+
|
403 |
+
Return: list of model names where the word occurs
|
404 |
+
'''
|
405 |
all_models = load_all_models()
|
406 |
eligible_models = []
|
407 |
|
|
|
414 |
|
415 |
return eligible_models
|
416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
+
def count_lemmas(directory):
|
420 |
+
'''
|
421 |
+
Create a Counter with all words and their occurrences for all models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
+
directory: the directory containing the text files for the models
|
424 |
|
425 |
+
Return: a dictionary where keys are model names and values are Counters of word occurrences
|
426 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
lemma_count_dict = {}
|
428 |
for file in os.listdir(directory):
|
429 |
model_name = file.split('.')[0].replace('_', ' ').capitalize()
|
|
|
437 |
lemma_count_dict[model_name] = Counter(words)
|
438 |
|
439 |
return lemma_count_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|