File size: 7,357 Bytes
3ec9224
5be8df6
85a72e5
 
5db4902
5be8df6
b0d4cdc
e9fa814
 
 
ecf1633
b0d4cdc
 
1ef8d7c
aa98840
1ef8d7c
e9fa814
 
 
 
 
 
 
 
 
 
 
 
 
b0d4cdc
 
 
37ae113
e9fa814
5be8df6
 
 
e9fa814
 
 
5be8df6
 
 
 
b0d4cdc
e9fa814
 
 
 
5be8df6
 
 
b0d4cdc
5be8df6
1ef8d7c
5be8df6
 
1ef8d7c
 
e9fa814
5be8df6
 
 
b0d4cdc
e9fa814
 
 
 
 
 
 
b0d4cdc
 
5be8df6
 
e9fa814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be8df6
e9fa814
5be8df6
 
9733941
5be8df6
 
e9fa814
 
 
5be8df6
 
 
 
 
e9fa814
9733941
e9fa814
138ca2e
5be8df6
e9fa814
00bd139
5be8df6
b0d4cdc
9bf736d
e9fa814
9bf736d
e9fa814
9bf736d
e9fa814
 
 
 
 
 
 
 
 
 
 
08108c1
 
e9fa814
fa7cc51
6e8daa8
fa7cc51
6e8daa8
e9fa814
 
9bf736d
 
b0d4cdc
9bf736d
 
e9fa814
9bf736d
e9fa814
 
9bf736d
e9fa814
 
5be8df6
e9fa814
 
 
1ef8d7c
5be8df6
e9fa814
b0d4cdc
e9fa814
5be8df6
e9fa814
 
 
00bd139
 
5be8df6
e9fa814
5be8df6
 
 
 
 
 
b0d4cdc
5be8df6
e9fa814
00bd139
5be8df6
e9fa814
 
 
5be8df6
e9fa814
 
 
9733941
e9fa814
 
 
 
 
 
 
 
 
 
 
9733941
e9fa814
 
 
 
 
 
 
 
 
 
b0d4cdc
 
 
5be8df6
e9fa814
5be8df6
e9fa814
3ca2785
00bd139
1ef8d7c
5be8df6
 
e9fa814
6f396af
e9fa814
 
 
 
 
 
51d2a09
e9fa814
 
 
 
51d2a09
e9fa814
 
 
 
 
 
 
 
 
 
 
 
5be8df6
e9fa814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14155e5
e9fa814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be8df6
e9fa814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0d4cdc
5be8df6
e9fa814
5be8df6
 
b0d4cdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import gradio as gr
import os
import re
from pathlib import Path
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 



from langchain_community.llms import HuggingFaceEndpoint

from pathlib import Path
import chromadb
from unidecode import unidecode

# List of allowed models
allowed_llms = [
    "mistralai/Mistral-7B-Instruct-v0.2", 
    "mistralai/Mixtral-8x7B-Instruct-v0.1", 
    "mistralai/Mistral-7B-Instruct-v0.1",
    "google/gemma-7b-it", 
    "google/gemma-2b-it", 
    "HuggingFaceH4/zephyr-7b-beta", 
    "HuggingFaceH4/zephyr-7b-gemma-v0.1", 
    "meta-llama/Llama-2-7b-chat-hf"






]
list_llm_simple = [os.path.basename(llm) for llm in allowed_llms]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):



    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, 
        chunk_overlap=chunk_overlap
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,

    )
    return vectordb











# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm = HuggingFaceEndpoint(
        repo_id=llm_model, 
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
        load_in_8bit=True,
    )









































































    

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    

    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,

        return_source_documents=True,

        verbose=False,
    )

    return qa_chain


# Generate collection name for vector database

def create_collection_name(filepath):

    collection_name = Path(filepath).stem
    collection_name = unidecode(collection_name).replace(" ", "-")
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]









    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'

    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'


    return collection_name


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):

    list_file_path = [x.name for x in list_file_obj if x is not None]


    collection_name = create_collection_name(list_file_path[0])


    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)



    vector_db = create_db(doc_splits, collection_name)

    return vector_db, collection_name, "Complete!"

# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = allowed_llms[llm_option]


    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

# Format chat history
def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history


# Conversation handling
def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)



    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"].split("Helpful Answer:")[-1]


    response_sources = response["source_documents"]











    new_history = history + [(message, response_answer)]
    response_details = [(src.page_content.strip(), src.metadata["page"] + 1) for src in response_sources[:3]]
    return qa_chain, gr.update(value=""), new_history, *sum(response_details, ())












# Gradio Interface
def demo():
    with gr.Blocks(theme="default") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>PDF-based Chatbot</h2></center>
        <h3>Ask any questions about your PDF documents</h3>""")






        
        with gr.Tab("Upload PDF"):
            document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF Documents")


        
        with gr.Tab("Process Document"):
            db_btn = gr.Radio(["ChromaDB"], label="Vector Database", value="ChromaDB", type="index")
            with gr.Accordion("Advanced Options", open=False):
                slider_chunk_size = gr.Slider(100, 1000, 600, 20, label="Chunk Size", interactive=True)
                slider_chunk_overlap = gr.Slider(10, 200, 40, 10, label="Chunk Overlap", interactive=True)
            db_progress = gr.Textbox(label="Database Initialization Status", value="None")
            db_btn = gr.Button("Generate Database")





            
        with gr.Tab("Initialize QA Chain"):
            llm_btn = gr.Radio(list_llm_simple, label="LLM Models", value=list_llm_simple[0], type="index")
            with gr.Accordion("Advanced Options", open=False):
                slider_temperature = gr.Slider(0.01, 1.0, 0.7, 0.1, label="Temperature", interactive=True)
                slider_maxtokens = gr.Slider(224, 4096, 1024, 32, label="Max Tokens", interactive=True)
                slider_topk = gr.Slider(1, 10, 3, 1, label="Top-k Samples", interactive=True)
            llm_progress = gr.Textbox(value="None", label="QA Chain Initialization Status")
            qachain_btn = gr.Button("Initialize QA Chain")

        with gr.Tab("Chatbot"):







            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Document References", open=False):
                for i in range(1, 4):
                    gr.Row([gr.Textbox(label=f"Reference {i}", lines=2, container=True, scale=20), gr.Number(label="Page", scale=1)])
            msg = gr.Textbox(placeholder="Type message here...", container=True)
            gr.Row([gr.Button("Submit"), gr.Button("Clear Conversation")])










            
        # Define Interactions
        db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress])
        msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + [None] * 6)























    demo.launch(debug=True)

if __name__ == "__main__":
    demo()