Spaces:
Runtime error
Runtime error
Gokulnath2003
commited on
Commit
•
e9fa814
1
Parent(s):
b0d4cdc
Update app.py
Browse files
app.py
CHANGED
@@ -2,52 +2,51 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import re
|
4 |
from pathlib import Path
|
5 |
-
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
|
27 |
-
# default_persist_directory = './chroma_HF/'
|
28 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
29 |
-
"google/gemma-7b-it","google/gemma-2b-it", \
|
30 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
31 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
32 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
33 |
-
"google/flan-t5-xxl"
|
34 |
]
|
35 |
-
list_llm_simple = [os.path.basename(llm) for llm in
|
36 |
|
37 |
# Load PDF document and create doc splits
|
38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
43 |
pages = []
|
44 |
for loader in loaders:
|
45 |
pages.extend(loader.load())
|
46 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
47 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size = chunk_size,
|
49 |
-
chunk_overlap = chunk_overlap)
|
50 |
|
|
|
|
|
|
|
|
|
51 |
doc_splits = text_splitter.split_documents(pages)
|
52 |
return doc_splits
|
53 |
|
@@ -58,322 +57,322 @@ def create_db(splits, collection_name):
|
|
58 |
embedding=embedding,
|
59 |
client=new_client,
|
60 |
collection_name=collection_name,
|
61 |
-
|
62 |
)
|
63 |
return vectordb
|
64 |
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
|
75 |
# Initialize langchain LLM chain
|
76 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
memory = ConversationBufferMemory(
|
160 |
memory_key="chat_history",
|
161 |
output_key='answer',
|
162 |
return_messages=True
|
163 |
)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
168 |
llm,
|
169 |
retriever=retriever,
|
170 |
chain_type="stuff",
|
171 |
memory=memory,
|
172 |
-
|
173 |
return_source_documents=True,
|
174 |
-
|
175 |
verbose=False,
|
176 |
)
|
177 |
-
|
178 |
return qa_chain
|
179 |
|
180 |
|
181 |
# Generate collection name for vector database
|
182 |
-
|
183 |
def create_collection_name(filepath):
|
184 |
-
|
185 |
collection_name = Path(filepath).stem
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
if len(collection_name) < 3:
|
198 |
collection_name = collection_name + 'xyz'
|
199 |
-
|
200 |
if not collection_name[0].isalnum():
|
201 |
collection_name = 'A' + collection_name[1:]
|
202 |
if not collection_name[-1].isalnum():
|
203 |
collection_name = collection_name[:-1] + 'Z'
|
204 |
-
|
205 |
-
|
206 |
return collection_name
|
207 |
|
208 |
|
209 |
# Initialize database
|
210 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
211 |
-
|
212 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
213 |
-
|
214 |
-
|
215 |
collection_name = create_collection_name(list_file_path[0])
|
216 |
-
|
217 |
-
|
218 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
vector_db = create_db(doc_splits, collection_name)
|
223 |
-
progress(0.9, desc="Done!")
|
224 |
-
return vector_db, collection_name, "Complete!"
|
225 |
|
|
|
226 |
|
|
|
227 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
232 |
return qa_chain, "Complete!"
|
233 |
|
234 |
-
|
235 |
def format_chat_history(message, chat_history):
|
236 |
formatted_chat_history = []
|
237 |
for user_message, bot_message in chat_history:
|
238 |
formatted_chat_history.append(f"User: {user_message}")
|
239 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
240 |
return formatted_chat_history
|
241 |
-
|
242 |
|
243 |
|
|
|
244 |
def conversation(qa_chain, message, history):
|
245 |
formatted_chat_history = format_chat_history(message, history)
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
250 |
-
response_answer = response["answer"]
|
251 |
-
|
252 |
-
|
253 |
response_sources = response["source_documents"]
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
new_history = history + [(message, response_answer)]
|
266 |
-
|
267 |
-
return qa_chain, gr.update(value=""), new_history,
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
def upload_file(file_obj):
|
271 |
-
list_file_path = []
|
272 |
-
for idx, file in enumerate(file_obj):
|
273 |
-
file_path = file_obj.name
|
274 |
-
list_file_path.append(file_path)
|
275 |
-
# print(file_path)
|
276 |
-
# initialize_database(file_path, progress)
|
277 |
-
return list_file_path
|
278 |
|
279 |
|
280 |
|
|
|
281 |
def demo():
|
282 |
-
with gr.Blocks(theme="
|
283 |
vector_db = gr.State()
|
284 |
qa_chain = gr.State()
|
285 |
collection_name = gr.State()
|
286 |
|
287 |
gr.Markdown(
|
288 |
-
"""<center><h2>PDF-based
|
289 |
<h3>Ask any questions about your PDF documents</h3>""")
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
|
297 |
-
with gr.Tab("
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
|
302 |
-
with gr.Tab("
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
|
315 |
-
with gr.Tab("
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
chatbot = gr.Chatbot(height=300)
|
333 |
-
with gr.Accordion("
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
|
349 |
-
#
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
demo.queue().launch(debug=True)
|
375 |
|
376 |
|
|
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
demo()
|
|
|
2 |
import os
|
3 |
import re
|
4 |
from pathlib import Path
|
|
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
|
13 |
from pathlib import Path
|
14 |
import chromadb
|
15 |
from unidecode import unidecode
|
16 |
|
17 |
+
# List of allowed models
|
18 |
+
allowed_llms = [
|
19 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
20 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
21 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
22 |
+
"google/gemma-7b-it",
|
23 |
+
"google/gemma-2b-it",
|
24 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
25 |
+
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
26 |
+
"meta-llama/Llama-2-7b-chat-hf"
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
]
|
34 |
+
list_llm_simple = [os.path.basename(llm) for llm in allowed_llms]
|
35 |
|
36 |
# Load PDF document and create doc splits
|
37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
42 |
pages = []
|
43 |
for loader in loaders:
|
44 |
pages.extend(loader.load())
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
47 |
+
chunk_size=chunk_size,
|
48 |
+
chunk_overlap=chunk_overlap
|
49 |
+
)
|
50 |
doc_splits = text_splitter.split_documents(pages)
|
51 |
return doc_splits
|
52 |
|
|
|
57 |
embedding=embedding,
|
58 |
client=new_client,
|
59 |
collection_name=collection_name,
|
60 |
+
|
61 |
)
|
62 |
return vectordb
|
63 |
|
64 |
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
|
73 |
|
74 |
# Initialize langchain LLM chain
|
75 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
76 |
+
llm = HuggingFaceEndpoint(
|
77 |
+
repo_id=llm_model,
|
78 |
+
temperature=temperature,
|
79 |
+
max_new_tokens=max_tokens,
|
80 |
+
top_k=top_k,
|
81 |
+
load_in_8bit=True,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
|
157 |
+
|
158 |
memory = ConversationBufferMemory(
|
159 |
memory_key="chat_history",
|
160 |
output_key='answer',
|
161 |
return_messages=True
|
162 |
)
|
163 |
+
retriever = vector_db.as_retriever()
|
164 |
+
|
165 |
+
|
166 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
167 |
llm,
|
168 |
retriever=retriever,
|
169 |
chain_type="stuff",
|
170 |
memory=memory,
|
171 |
+
|
172 |
return_source_documents=True,
|
173 |
+
|
174 |
verbose=False,
|
175 |
)
|
176 |
+
|
177 |
return qa_chain
|
178 |
|
179 |
|
180 |
# Generate collection name for vector database
|
181 |
+
|
182 |
def create_collection_name(filepath):
|
183 |
+
|
184 |
collection_name = Path(filepath).stem
|
185 |
+
collection_name = unidecode(collection_name).replace(" ", "-")
|
186 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
if len(collection_name) < 3:
|
197 |
collection_name = collection_name + 'xyz'
|
198 |
+
|
199 |
if not collection_name[0].isalnum():
|
200 |
collection_name = 'A' + collection_name[1:]
|
201 |
if not collection_name[-1].isalnum():
|
202 |
collection_name = collection_name[:-1] + 'Z'
|
203 |
+
|
204 |
+
|
205 |
return collection_name
|
206 |
|
207 |
|
208 |
# Initialize database
|
209 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
210 |
+
|
211 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
212 |
+
|
213 |
+
|
214 |
collection_name = create_collection_name(list_file_path[0])
|
215 |
+
|
216 |
+
|
217 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
vector_db = create_db(doc_splits, collection_name)
|
|
|
|
|
222 |
|
223 |
+
return vector_db, collection_name, "Complete!"
|
224 |
|
225 |
+
# Initialize LLM
|
226 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
227 |
+
llm_name = allowed_llms[llm_option]
|
228 |
+
|
229 |
+
|
230 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
231 |
return qa_chain, "Complete!"
|
232 |
|
233 |
+
# Format chat history
|
234 |
def format_chat_history(message, chat_history):
|
235 |
formatted_chat_history = []
|
236 |
for user_message, bot_message in chat_history:
|
237 |
formatted_chat_history.append(f"User: {user_message}")
|
238 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
239 |
return formatted_chat_history
|
|
|
240 |
|
241 |
|
242 |
+
# Conversation handling
|
243 |
def conversation(qa_chain, message, history):
|
244 |
formatted_chat_history = format_chat_history(message, history)
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
249 |
+
response_answer = response["answer"].split("Helpful Answer:")[-1]
|
250 |
+
|
251 |
+
|
252 |
response_sources = response["source_documents"]
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
new_history = history + [(message, response_answer)]
|
265 |
+
response_details = [(src.page_content.strip(), src.metadata["page"] + 1) for src in response_sources[:3]]
|
266 |
+
return qa_chain, gr.update(value=""), new_history, *sum(response_details, ())
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
|
278 |
|
279 |
+
# Gradio Interface
|
280 |
def demo():
|
281 |
+
with gr.Blocks(theme="default") as demo:
|
282 |
vector_db = gr.State()
|
283 |
qa_chain = gr.State()
|
284 |
collection_name = gr.State()
|
285 |
|
286 |
gr.Markdown(
|
287 |
+
"""<center><h2>PDF-based Chatbot</h2></center>
|
288 |
<h3>Ask any questions about your PDF documents</h3>""")
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
|
296 |
+
with gr.Tab("Upload PDF"):
|
297 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF Documents")
|
298 |
+
|
299 |
+
|
300 |
|
301 |
+
with gr.Tab("Process Document"):
|
302 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector Database", value="ChromaDB", type="index")
|
303 |
+
with gr.Accordion("Advanced Options", open=False):
|
304 |
+
slider_chunk_size = gr.Slider(100, 1000, 600, 20, label="Chunk Size", interactive=True)
|
305 |
+
slider_chunk_overlap = gr.Slider(10, 200, 40, 10, label="Chunk Overlap", interactive=True)
|
306 |
+
db_progress = gr.Textbox(label="Database Initialization Status", value="None")
|
307 |
+
db_btn = gr.Button("Generate Database")
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
|
314 |
+
with gr.Tab("Initialize QA Chain"):
|
315 |
+
llm_btn = gr.Radio(list_llm_simple, label="LLM Models", value=list_llm_simple[0], type="index")
|
316 |
+
with gr.Accordion("Advanced Options", open=False):
|
317 |
+
slider_temperature = gr.Slider(0.01, 1.0, 0.7, 0.1, label="Temperature", interactive=True)
|
318 |
+
slider_maxtokens = gr.Slider(224, 4096, 1024, 32, label="Max Tokens", interactive=True)
|
319 |
+
slider_topk = gr.Slider(1, 10, 3, 1, label="Top-k Samples", interactive=True)
|
320 |
+
llm_progress = gr.Textbox(value="None", label="QA Chain Initialization Status")
|
321 |
+
qachain_btn = gr.Button("Initialize QA Chain")
|
322 |
+
|
323 |
+
with gr.Tab("Chatbot"):
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
chatbot = gr.Chatbot(height=300)
|
332 |
+
with gr.Accordion("Document References", open=False):
|
333 |
+
for i in range(1, 4):
|
334 |
+
gr.Row([gr.Textbox(label=f"Reference {i}", lines=2, container=True, scale=20), gr.Number(label="Page", scale=1)])
|
335 |
+
msg = gr.Textbox(placeholder="Type message here...", container=True)
|
336 |
+
gr.Row([gr.Button("Submit"), gr.Button("Clear Conversation")])
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
|
348 |
+
# Define Interactions
|
349 |
+
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
350 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress])
|
351 |
+
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + [None] * 6)
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
|
|
373 |
|
374 |
|
375 |
+
demo.launch(debug=True)
|
376 |
|
377 |
if __name__ == "__main__":
|
378 |
demo()
|