clementsan commited on
Commit
51d2a09
·
1 Parent(s): 6e8daa8

Update UI with new step

Browse files
Files changed (1) hide show
  1. app.py +18 -13
app.py CHANGED
@@ -285,16 +285,21 @@ def demo():
285
  collection_name = gr.State()
286
 
287
  gr.Markdown(
288
- """<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
289
- <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
290
- <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
291
- When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
292
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
 
 
293
  """)
294
- with gr.Tab("Step 1 - Document pre-processing"):
 
295
  with gr.Row():
296
  document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
297
  # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
 
 
298
  with gr.Row():
299
  db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
300
  with gr.Accordion("Advanced options - Document text splitter", open=False):
@@ -305,9 +310,9 @@ def demo():
305
  with gr.Row():
306
  db_progress = gr.Textbox(label="Vector database initialization", value="None")
307
  with gr.Row():
308
- db_btn = gr.Button("Generate vector database...")
309
 
310
- with gr.Tab("Step 2 - QA chain initialization"):
311
  with gr.Row():
312
  llm_btn = gr.Radio(list_llm_simple, \
313
  label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
@@ -321,9 +326,9 @@ def demo():
321
  with gr.Row():
322
  llm_progress = gr.Textbox(value="None",label="QA chain initialization")
323
  with gr.Row():
324
- qachain_btn = gr.Button("Initialize question-answering chain...")
325
 
326
- with gr.Tab("Step 3 - Conversation with chatbot"):
327
  chatbot = gr.Chatbot(height=300)
328
  with gr.Accordion("Advanced - Document references", open=False):
329
  with gr.Row():
@@ -336,10 +341,10 @@ def demo():
336
  doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
337
  source3_page = gr.Number(label="Page", scale=1)
338
  with gr.Row():
339
- msg = gr.Textbox(placeholder="Type message", container=True)
340
  with gr.Row():
341
- submit_btn = gr.Button("Submit")
342
- clear_btn = gr.ClearButton([msg, chatbot])
343
 
344
  # Preprocessing events
345
  #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
 
285
  collection_name = gr.State()
286
 
287
  gr.Markdown(
288
+ """<center><h2>PDF-based chatbot</center></h2>
289
+ <h3>Ask any questions about your PDF documents, along with follow-ups</h3>""")
290
+ gr.Markdown(
291
+ """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
292
+ The user interface explicitely shows multiple steps to help understand the RAG workflow.
293
+ This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
294
+ <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
295
  """)
296
+
297
+ with gr.Tab("Step 1 - Upload PDF"):
298
  with gr.Row():
299
  document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
300
  # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
301
+
302
+ with gr.Tab("Step 2 - Process document"):
303
  with gr.Row():
304
  db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
305
  with gr.Accordion("Advanced options - Document text splitter", open=False):
 
310
  with gr.Row():
311
  db_progress = gr.Textbox(label="Vector database initialization", value="None")
312
  with gr.Row():
313
+ db_btn = gr.Button("Generate vector database")
314
 
315
+ with gr.Tab("Step 3 - Initialize QA chain"):
316
  with gr.Row():
317
  llm_btn = gr.Radio(list_llm_simple, \
318
  label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
 
326
  with gr.Row():
327
  llm_progress = gr.Textbox(value="None",label="QA chain initialization")
328
  with gr.Row():
329
+ qachain_btn = gr.Button("Initialize Question Answering chain")
330
 
331
+ with gr.Tab("Step 4 - Chatbot"):
332
  chatbot = gr.Chatbot(height=300)
333
  with gr.Accordion("Advanced - Document references", open=False):
334
  with gr.Row():
 
341
  doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
342
  source3_page = gr.Number(label="Page", scale=1)
343
  with gr.Row():
344
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
345
  with gr.Row():
346
+ submit_btn = gr.Button("Submit message")
347
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
348
 
349
  # Preprocessing events
350
  #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])