Spaces:
Runtime error
Runtime error
clementsan
commited on
Commit
•
00bd139
1
Parent(s):
ceae871
Update qa_chain to gradio session state
Browse files
app.py
CHANGED
@@ -107,7 +107,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
107 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
108 |
retriever=vector_db.as_retriever()
|
109 |
progress(0.8, desc="Defining retrieval chain...")
|
110 |
-
global qa_chain
|
111 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
112 |
llm,
|
113 |
retriever=retriever,
|
@@ -119,10 +118,10 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
119 |
# verbose=True,
|
120 |
)
|
121 |
progress(0.9, desc="Done!")
|
122 |
-
|
123 |
|
124 |
|
125 |
-
# Initialize
|
126 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
127 |
# Create list of documents (when valid)
|
128 |
#file_path = file_obj.name
|
@@ -137,16 +136,14 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Pr
|
|
137 |
vector_db = create_db(doc_splits)
|
138 |
progress(0.9, desc="Done!")
|
139 |
return vector_db, "Complete!"
|
140 |
-
#return qa_chain
|
141 |
|
142 |
|
143 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
144 |
print("llm_option",llm_option)
|
145 |
llm_name = list_llm[llm_option]
|
146 |
print("llm_name",llm_name)
|
147 |
-
initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
148 |
-
return "Complete!"
|
149 |
-
#return qa_chain
|
150 |
|
151 |
|
152 |
def format_chat_history(message, chat_history):
|
@@ -157,7 +154,7 @@ def format_chat_history(message, chat_history):
|
|
157 |
return formatted_chat_history
|
158 |
|
159 |
|
160 |
-
def conversation(message, history):
|
161 |
formatted_chat_history = format_chat_history(message, history)
|
162 |
#print("formatted_chat_history",formatted_chat_history)
|
163 |
|
@@ -176,7 +173,7 @@ def conversation(message, history):
|
|
176 |
# Append user message and response to chat history
|
177 |
new_history = history + [(message, response_answer)]
|
178 |
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
179 |
-
return gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
180 |
|
181 |
|
182 |
def upload_file(file_obj):
|
@@ -192,7 +189,7 @@ def upload_file(file_obj):
|
|
192 |
def demo():
|
193 |
with gr.Blocks(theme="base") as demo:
|
194 |
vector_db = gr.State()
|
195 |
-
|
196 |
|
197 |
gr.Markdown(
|
198 |
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
@@ -252,19 +249,19 @@ def demo():
|
|
252 |
outputs=[vector_db, db_progress])
|
253 |
qachain_btn.click(initialize_LLM, \
|
254 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
255 |
-
outputs=[llm_progress]).then(lambda:[None,"",0,"",0], \
|
256 |
inputs=None, \
|
257 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
258 |
queue=False)
|
259 |
|
260 |
# Chatbot events
|
261 |
msg.submit(conversation, \
|
262 |
-
inputs=[msg, chatbot], \
|
263 |
-
outputs=[msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
264 |
queue=False)
|
265 |
submit_btn.click(conversation, \
|
266 |
-
inputs=[msg, chatbot], \
|
267 |
-
outputs=[msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
268 |
queue=False)
|
269 |
clear_btn.click(lambda:[None,"",0,"",0], \
|
270 |
inputs=None, \
|
|
|
107 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
108 |
retriever=vector_db.as_retriever()
|
109 |
progress(0.8, desc="Defining retrieval chain...")
|
|
|
110 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
111 |
llm,
|
112 |
retriever=retriever,
|
|
|
118 |
# verbose=True,
|
119 |
)
|
120 |
progress(0.9, desc="Done!")
|
121 |
+
return qa_chain
|
122 |
|
123 |
|
124 |
+
# Initialize database
|
125 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
126 |
# Create list of documents (when valid)
|
127 |
#file_path = file_obj.name
|
|
|
136 |
vector_db = create_db(doc_splits)
|
137 |
progress(0.9, desc="Done!")
|
138 |
return vector_db, "Complete!"
|
|
|
139 |
|
140 |
|
141 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
142 |
print("llm_option",llm_option)
|
143 |
llm_name = list_llm[llm_option]
|
144 |
print("llm_name",llm_name)
|
145 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
146 |
+
return qa_chain, "Complete!"
|
|
|
147 |
|
148 |
|
149 |
def format_chat_history(message, chat_history):
|
|
|
154 |
return formatted_chat_history
|
155 |
|
156 |
|
157 |
+
def conversation(qa_chain, message, history):
|
158 |
formatted_chat_history = format_chat_history(message, history)
|
159 |
#print("formatted_chat_history",formatted_chat_history)
|
160 |
|
|
|
173 |
# Append user message and response to chat history
|
174 |
new_history = history + [(message, response_answer)]
|
175 |
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
176 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
|
177 |
|
178 |
|
179 |
def upload_file(file_obj):
|
|
|
189 |
def demo():
|
190 |
with gr.Blocks(theme="base") as demo:
|
191 |
vector_db = gr.State()
|
192 |
+
qa_chain = gr.State()
|
193 |
|
194 |
gr.Markdown(
|
195 |
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
|
|
249 |
outputs=[vector_db, db_progress])
|
250 |
qachain_btn.click(initialize_LLM, \
|
251 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
252 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0], \
|
253 |
inputs=None, \
|
254 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
255 |
queue=False)
|
256 |
|
257 |
# Chatbot events
|
258 |
msg.submit(conversation, \
|
259 |
+
inputs=[qa_chain, msg, chatbot], \
|
260 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
261 |
queue=False)
|
262 |
submit_btn.click(conversation, \
|
263 |
+
inputs=[qa_chain, msg, chatbot], \
|
264 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
|
265 |
queue=False)
|
266 |
clear_btn.click(lambda:[None,"",0,"",0], \
|
267 |
inputs=None, \
|