File size: 46,713 Bytes
5cb7ea4
 
2495909
 
3a2edc8
 
 
 
 
 
 
 
090c24d
3a2edc8
 
 
2495909
 
 
 
 
 
 
 
 
77c84e0
 
ece0211
77c84e0
 
b33c1d5
2495909
 
04a42b6
2495909
 
 
 
712fd27
00568c1
 
 
2495909
712fd27
7512c3a
2495909
 
 
 
1496441
2495909
 
 
 
db73b94
 
 
 
2495909
db73b94
 
77c84e0
db73b94
afb31e1
 
db73b94
 
 
2495909
 
 
 
db73b94
5cb7ea4
68b227a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9da4b9
 
ba9ac72
db73b94
2495909
 
58d6659
db73b94
ddf8150
 
 
db73b94
 
d21318d
db73b94
9845c5e
5e5296a
ddf8150
db73b94
ddf8150
 
b715cd5
 
 
85326bf
861ceca
db73b94
ba9ac72
861ceca
 
738a057
 
 
 
ba9ac72
db73b94
ba9ac72
e9da4b9
04d2813
 
77c84e0
04d2813
41a4d15
04d2813
 
84169d1
 
 
 
 
 
2dc4310
 
 
2e71ff0
 
 
 
 
 
 
b502392
2e71ff0
 
 
 
 
 
8a8d1c4
 
2e71ff0
 
 
 
 
77c84e0
04a42b6
04d2813
bdc4bd7
cf61f14
77c84e0
2b222de
9845c5e
5e5296a
2b222de
85b0be2
 
 
 
 
04d2813
ece0211
501b4d1
ece0211
 
 
501b4d1
77c84e0
ff68a95
 
 
 
 
 
2e13cef
 
ff68a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a4d15
ff68a95
 
 
 
 
 
 
9845c5e
5e5296a
ff68a95
919f4ca
ff68a95
 
 
 
 
 
 
 
77c84e0
 
f51c9c5
b33c1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
332984d
b33c1d5
 
 
 
 
 
 
04d2813
 
2495909
9aab0b8
04d2813
db73b94
 
 
 
d339beb
db73b94
 
 
712fd27
 
 
 
 
 
 
db73b94
 
 
 
 
 
 
e1a91b0
db73b94
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
7bc28eb
 
 
 
 
 
 
f92245d
7bc28eb
 
 
 
5b33e29
 
 
 
1c38253
 
 
 
5b33e29
 
 
 
 
 
 
 
78a1e1f
 
 
 
5b33e29
 
 
 
409ca0f
 
 
 
5b33e29
 
 
 
1c38253
 
 
 
 
 
 
 
 
 
 
 
33e1890
 
 
 
f474650
 
 
 
e7d3e2d
aac4b76
 
 
e7d3e2d
729c299
 
 
aac4b76
 
 
 
ba9ac72
db73b94
 
2097a09
 
e1b214c
 
 
9cd27b2
e1b214c
 
 
 
04a42b6
 
 
 
 
e1b214c
9cd27b2
 
e1b214c
 
04a42b6
 
 
04d2813
04a42b6
590d603
2097a09
 
04d2813
 
cc7e800
04d2813
 
 
 
 
68237ea
04d2813
 
 
9e64f42
41da98b
 
04d2813
9e64f42
 
46032a1
8bba642
 
 
 
 
f7a2263
9e64f42
5ac3392
 
 
 
 
 
 
 
 
20aa4b5
 
 
 
 
 
 
9e64f42
 
04a42b6
 
 
409ca0f
 
 
 
 
 
3cc67d2
 
 
 
 
 
04d2813
 
 
 
a9e502e
04d2813
782b6a4
 
e65c203
d7635b7
88e17ff
04d2813
68237ea
04d2813
 
 
9083910
04d2813
 
 
 
 
 
 
 
 
 
20aa4b5
0a472e1
 
77c84e0
 
04d2813
77c84e0
0a472e1
77c84e0
 
04d2813
77c84e0
896c1ae
e3c494c
 
 
0a472e1
 
 
 
362821c
 
47d601f
 
47961fd
 
77c84e0
 
1066751
04d2813
77c84e0
19a600a
 
77c84e0
eb41f76
1115c50
19a600a
1bc1186
 
 
 
 
 
 
41353d2
 
 
 
 
 
 
 
1bc1186
77c84e0
dd00657
04d2813
 
 
77c84e0
0a472e1
77c84e0
a9e502e
04d2813
 
e65c203
04d2813
 
 
e65c203
04d2813
48c5647
 
 
 
bdfefaf
 
 
 
 
77c84e0
0a472e1
3cc67d2
0a472e1
 
9e64f42
00dce35
 
 
 
306fe19
20aa4b5
 
 
9fc29e0
 
db73b94
9cd27b2
04a42b6
 
9cd27b2
04a42b6
5855dde
04a42b6
 
5855dde
 
04a42b6
77c84e0
9cd27b2
04a42b6
 
 
 
 
 
 
5855dde
f7a2263
 
5787e1a
 
 
 
 
 
 
 
 
 
 
d7057cc
 
 
f8ae59b
 
 
98b4762
 
77c84e0
0a472e1
 
77c84e0
2b43668
9ec2077
 
 
3db5f2f
 
 
c146880
165907f
73a0b6e
 
 
77c84e0
 
1c33eb8
be294fd
0a472e1
8626b54
 
 
 
04d2813
77c84e0
0a472e1
 
77c84e0
 
8e197f6
77c84e0
2bb0b78
77c84e0
67b9888
77c84e0
2bb0b78
 
 
04d2813
992e742
 
 
 
 
 
77c84e0
04d2813
77c84e0
a3e8783
 
04d2813
77c84e0
 
 
 
0a472e1
 
 
 
 
 
 
 
04d2813
 
 
8487b97
 
77c84e0
 
 
 
 
04d2813
 
 
77c84e0
0a472e1
04d2813
4cb7900
 
 
 
 
 
bde3c5a
77c84e0
 
 
 
bde3c5a
04d2813
dec66d7
7019509
77c84e0
 
0a472e1
a1da39c
 
7019509
04d2813
090c24d
 
 
 
77c84e0
0a472e1
04d2813
77c84e0
a4e1bb6
 
 
77c84e0
 
 
c2a0792
77c84e0
0a472e1
2642cae
8b79ff0
fb12895
 
0a472e1
2b990eb
04d2813
5f79b82
 
77c84e0
 
5f79b82
77c84e0
 
 
 
41ecb45
04d2813
77c84e0
 
5b67ea9
58ec8b1
 
 
77c84e0
5491278
 
77c84e0
0a472e1
77c84e0
 
 
0a472e1
04d2813
16f9e28
0a472e1
4d2e842
 
 
04d2813
77c84e0
0a472e1
 
05c1834
77c84e0
05c1834
 
04b978b
05c1834
77c84e0
 
05c1834
77c84e0
05c1834
 
 
77c84e0
6d57f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
77c84e0
04d2813
c969f0a
 
 
 
 
 
04d2813
3bd9528
 
 
ef24342
3bd9528
77c84e0
eea2731
77c84e0
0a472e1
77c84e0
72fe3f8
895f0a0
 
15d3a65
 
77c84e0
2675fb7
 
1d70f24
 
77c84e0
0a472e1
77c84e0
 
0a472e1
04d2813
77c84e0
0a472e1
 
77c84e0
 
04d2813
 
 
 
77c84e0
 
2b43668
f2a2029
04d2813
 
 
12de7b7
54d2ac1
04d2813
 
396a7a7
 
 
 
 
29273b5
04d2813
 
fae6ed8
 
 
04d2813
 
9083910
 
 
d7d8bc7
 
 
12de7b7
 
04d2813
0a472e1
77c84e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
0a472e1
04d2813
 
861ceca
0a472e1
 
e50ab07
 
 
 
 
b31038a
 
 
94d03c8
 
e50ab07
94d03c8
 
e50ab07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d2ac1
e50ab07
 
 
54d2ac1
e50ab07
 
 
cf5ae6b
 
 
 
 
 
 
 
 
 
 
 
7019509
 
dec66d7
 
7019509
 
 
 
 
 
a1da39c
7019509
 
 
712fd27
 
d25c34c
712fd27
 
 
 
 
 
 
 
 
 
 
 
 
76357dc
04d2813
76357dc
f6ecf14
76357dc
 
04d2813
8552218
 
861ceca
8552218
 
 
861ceca
8552218
c4e4f81
 
861ceca
 
c4e4f81
738a057
 
 
 
0a472e1
11c48c5
 
 
 
bc97f9c
04d2813
63fb3eb
ba9ac72
 
63fb3eb
ba9ac72
 
bdfefaf
88e17ff
 
861ceca
88e17ff
 
bdfefaf
 
ba9ac72
 
7512c3a
a21935f
2495909
5417824
 
 
 
3c71c8d
5417824
ba9ac72
b0cf397
 
 
 
04a42b6
 
 
2495909
 
 
1377400
 
 
 
e689069
 
 
 
b64f411
cf5ae6b
 
 
5e2d8a4
 
 
 
712fd27
 
 
 
 
 
 
 
 
 
9135b9e
712fd27
 
 
7512c3a
 
 
 
dfd1885
3f6017d
dfd1885
 
 
e07bd8a
b267d24
 
 
 
 
 
 
 
 
 
5ff547d
 
2495909
 
5ff547d
08b8ba0
5ff547d
 
 
 
 
 
ba9ac72
 
31db0ec
 
 
04d2813
bc97f9c
afb31e1
 
 
b1cc54b
afb31e1
b1cc54b
 
 
afb31e1
1496441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
# Axolotl

Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.

Features:
- Train various Huggingface models such as llama, pythia, falcon, mpt
- Supports fullfinetune, lora, qlora, relora, and gptq
- Customize configurations using a simple yaml file or CLI overwrite
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
- Integrated with xformer, flash attention, rope scaling, and multipacking
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
- Easily run with Docker locally or on the cloud
- Log results and optionally checkpoints to wandb or mlflow
- And more!


<table>
<tr>
<td>

## Table of Contents
- [Introduction](#axolotl)
- [Supported Features](#axolotl-supports)
- [Quickstart](#quickstart-)
- [Installation](#installation)
  - [Docker](#docker)
  - [Conda/Pip venv](#condapip-venv)
  - [Cloud GPU](#cloud-gpu) - Runpod, Latitude
  - [LambdaLabs](#lambdalabs)
  - [Windows](#windows)
  - [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
- [Dataset](#dataset)
  - [How to Add Custom Prompts](#how-to-add-custom-prompts)
  - [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset)
- [Config](#config)
  - [Train](#train)
  - [Inference](#inference)
  - [Merge LORA to Base](#merge-lora-to-base)
  - [Special Tokens](#special-tokens)
- Advanced Topics
  - [Multipack](./docs/multipack.md)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
  - [RLHF & DPO](./docs/rlhf.md)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
- [Common Errors](#common-errors-)
  - [Tokenization Mismatch b/w Training & Inference](#tokenization-mismatch-bw-inference--training)
- [Debugging Axolotl](#debugging-axolotl)
- [Need Help?](#need-help-)
- [Badge](#badge-)
- [Community Showcase](#community-showcase)
- [Contributing](#contributing-)
- [Sponsors](#sponsors-)

</td>
<td>

<div align="center">
  <img src="image/axolotl.png" alt="axolotl" width="160">
  <div>
    <p>
      <b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
    </p>
    <p>
      Go ahead and Axolotl questions!!
    </p>
    <img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
    <img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
  </div>
</div>

</td>
</tr>
</table>

## Axolotl supports

|             | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|-------------|:----------|:-----|-------|------|-------------------|------------|--------------|
| llama       | βœ…         | βœ…    | βœ…     | βœ…             | βœ…                 | βœ…          | βœ…            |
| Mistral     | βœ…         | βœ…    | βœ…     | βœ…             | βœ…                 | βœ…          | βœ…            |
| Mixtral-MoE | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| Pythia      | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| cerebras    | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| btlm        | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| mpt         | βœ…         | ❌    | ❓     | ❌             | ❌                 | ❌          | ❓            |
| falcon      | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| gpt-j       | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❓          | ❓            |
| XGen        | βœ…         | ❓    | βœ…     | ❓             | ❓                 | ❓          | βœ…            |
| phi         | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |
| RWKV        | βœ…         | ❓    | ❓     | ❓             | ❓                 | ❓          | ❓            |
| Qwen        | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |


## Quickstart ⚑

Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.

**Requirements**: Python >=3.9 and Pytorch >=2.0.

`pip3 install "axolotl[flash-attn,deepspeed] @ git+https://github.com/OpenAccess-AI-Collective/axolotl"`

### For developers
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl

pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
```

### Usage
```bash
# preprocess datasets - optional but recommended
CUDA_VISIBLE_DEVICES="" python -m axolotl.cli.preprocess examples/openllama-3b/lora.yml

# finetune lora
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml

# inference
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
    --lora_model_dir="./lora-out"

# gradio
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
    --lora_model_dir="./lora-out" --gradio
```

## Installation

### Environment

#### Docker
  ```bash
  docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1
  ```

  Or run on the current files for development:

  ```sh
  docker compose up -d
  ```

>[!Tip]
> If you want to debug axolotl or prefer to use Docker as your development environment, see the [debugging guide's section on Docker](docs/debugging.md#debugging-with-docker).

  <details>

  <summary>Docker advanced</summary>

  A more powerful Docker command to run would be this:

  ```bash
docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-py3.10-cu118-2.0.1
  ```

  It additionally:
  * Prevents memory issues when running e.g. deepspeed (e.g. you could hit SIGBUS/signal 7 error) through `--ipc` and `--ulimit` args.
  * Persists the downloaded HF data (models etc.) and your modifications to axolotl code through `--mount`/`-v` args.
  * The `--name` argument simply makes it easier to refer to the container in vscode (`Dev Containers: Attach to Running Container...`) or in your terminal.
  * The `--privileged` flag gives all capabilities to the container.
  * The `--shm-size 10g` argument increases the shared memory size. Use this if you see `exitcode: -7` errors using deepspeed.

  [More information on nvidia website](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#setincshmem)

  </details>

#### Conda/Pip venv
  1. Install python >=**3.9**

  2. Install pytorch stable https://pytorch.org/get-started/locally/

  3. Install Axolotl along with python dependencies
        ```bash
        pip3 install packaging
        pip3 install -e '.[flash-attn,deepspeed]'
        ```
  4. (Optional) Login to Huggingface to use gated models/datasets.
        ```bash
        huggingface-cli login
        ```
        Get the token at huggingface.co/settings/tokens

#### Cloud GPU

For cloud GPU providers that support docker images, use [`winglian/axolotl-cloud:main-latest`](https://hub.docker.com/r/winglian/axolotl-cloud/tags)

- on RunPod use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)

#### LambdaLabs
  <details>

  <summary>Click to Expand</summary>

  1. Install python
  ```bash
  sudo apt update
  sudo apt install -y python3.9

  sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
  sudo update-alternatives --config python # pick 3.9 if given option
  python -V # should be 3.9

  ```

  2. Install pip
  ```bash
  wget https://bootstrap.pypa.io/get-pip.py
  python get-pip.py
  ```

  3. Install torch
  ```bash
  pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118
  ```

  4. Axolotl
  ```bash
  git clone https://github.com/OpenAccess-AI-Collective/axolotl
  cd axolotl

  pip3 install packaging
  pip3 install -e '.[flash-attn,deepspeed]'
  pip3 install protobuf==3.20.3
  pip3 install -U --ignore-installed requests Pillow psutil scipy
  ```

  5. Set path
  ```bash
  export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
  ```
  </details>

#### Windows
Please use WSL or Docker!


#### Launching on public clouds via SkyPilot
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
```bash
pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]"  # choose your clouds
sky check
```
Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
```
git clone https://github.com/skypilot-org/skypilot.git
cd skypilot/llm/axolotl
```
Use one command to launch:
```bash
# On-demand
HF_TOKEN=xx sky launch axolotl.yaml --env HF_TOKEN

# Managed spot (auto-recovery on preemption)
HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
```


### Dataset

Axolotl supports a variety of dataset formats. Below are some of the formats you can use.
Have dataset(s) in one of the following format (JSONL recommended):

- `alpaca`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "..."}
  ```
- `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: `system` to override default system prompt)
  ```json
  {"conversations": [{"from": "...", "value": "..."}]}
  ```
- `llama-2`: the json is the same format as `sharegpt` above, with the following config (see the [config section](#config) for more details)
    ```yml
    datasets:
      - path: <your-path>
        type: sharegpt
        conversation: llama-2
    ```
- `completion`: raw corpus
  ```json
  {"text": "..."}
  ```

<details>

<summary>See other formats</summary>

- `jeopardy`: question and answer
  ```json
  {"question": "...", "category": "...", "answer": "..."}
  ```
- `oasst`: instruction
  ```json
  {"INSTRUCTION": "...", "RESPONSE": "..."}
  ```
- `gpteacher`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `reflection`: instruction with reflect; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
  ```
- `explainchoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `concisechoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `summarizetldr`: article and summary
  ```json
  {"article": "...", "summary": "..."}
  ```
- `alpaca_chat`: basic instruct for alpaca chat
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_qa`: question and answer for alpaca chat
  ```json
  {"question": "...", "answer": "..."}
  ```
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
  ```json
  {"message_1": "...", "message_2": "..."}
  ```
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct
  ```json
  {"system_prompt": "...", "question": "...", "response": "..."}
  ```
- `context_qa`: in context question answering from an article
  ```json
  {"article": "...", "question": "...", "answer": "..."}
  ```
- `context_qa.load_v2`: in context question answering (alternate)
  ```json
  {"context": "...", "question": "...", "answer": "..."}
  ```
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
  ```json
  {"article": "...", "unanswerable_question": "..."}
  ```
- `creative_acr.load_answer`: instruction and revision
  ```json
  {"instruction": "...", "revision": "..."}
  ```
- `creative_acr.load_critique`: critique
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
  ```
- `creative_acr.load_revise`: critique and revise
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
  ```
- `pygmalion`: pygmalion
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `metharme`: instruction, adds additional eos tokens
  ```json
  {"prompt": "...", "generation": "..."}
  ```
- `sharegpt.load_role`: conversations where `role` is used instead of `from`
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt
  ```json
  {"conversations": [{"from": "...", "value": "..."}]}
  ```
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
  ```json
  {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
  ```

</details>

#### How to add custom prompts

For a dataset that is preprocessed for instruction purposes:

```json
{"input": "...", "output": "..."}
```

You can use this example in your YAML config:

```yaml
datasets:
  - path: repo
    type:
      system_prompt: ""
      field_system: system
      field_instruction: input
      field_output: output
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
```

#### How to use your custom pretokenized dataset

- Do not pass a `type:`
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`


### Config

See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:

- model
  ```yaml
  base_model: ./llama-7b-hf # local or huggingface repo
  ```
  Note: The code will load the right architecture.

- dataset
  ```yaml
  sequence_len: 2048 # max token length for prompt

  # huggingface repo
  datasets:
    - path: vicgalle/alpaca-gpt4
      type: alpaca # format from earlier

  # huggingface repo with specific configuration/subset
  datasets:
    - path: EleutherAI/pile
      name: enron_emails
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data

  # huggingface repo with multiple named configurations/subsets
  datasets:
    - path: bigcode/commitpackft
      name:
        - ruby
        - python
        - typescript
      type: ... # unimplemented custom format

  # fastchat conversation
  # See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
  datasets:
    - path: ...
      type: sharegpt
      conversation: chatml

  # local
  datasets:
    - path: data.jsonl # or json
      ds_type: json # see other options below
      type: alpaca

  # dataset with splits, but no train split
  dataset:
    - path: knowrohit07/know_sql
      type: context_qa.load_v2
      train_on_split: validation

  # loading from s3 or gcs
  # s3 creds will be loaded from the system default and gcs only supports public access
  dataset:
    - path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
      ...
  ```

- loading
  ```yaml
  load_in_4bit: true
  load_in_8bit: true
  bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
  fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
  tf32: true # require >=ampere
  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
  float16: true # use instead of fp16 when you don't want AMP
  ```
  Note: Repo does not do 4-bit quantization.

- lora
  ```yaml
  adapter: lora # qlora or leave blank for full finetune
  lora_r: 8
  lora_alpha: 16
  lora_dropout: 0.05
  lora_target_modules:
    - q_proj
    - v_proj
  ```

<details>

<summary>All yaml options (click me)</summary>

```yaml
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# This can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# If the base_model repo on hf hub doesn't include configuration .json files,
# You can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# You can specify to choose a specific model revision from huggingface hub
model_revision:
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:
# Whether to use the legacy tokenizer setting, defaults to True
tokenizer_legacy:
# Resize the model embeddings when new tokens are added to multiples of 32
# This is reported to improve training speed on some models
resize_token_embeddings_to_32x:

# Used to identify which the model is based on
is_falcon_derived_model:
is_llama_derived_model:
# Please note that if you set this to true, `padding_side` will be set to "left" by default
is_mistral_derived_model:
is_qwen_derived_model:

# optional overrides to the base model configuration
model_config:
  # RoPE Scaling https://github.com/huggingface/transformers/pull/24653
  rope_scaling:
    type: # linear | dynamic
    factor: # float

# optional overrides to the bnb 4bit quantization configuration
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
bnb_config_kwargs:
  # These are default values
  llm_int8_has_fp16_weight: false
  bnb_4bit_quant_type: nf4
  bnb_4bit_use_double_quant: true


# Whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2

# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# Use bitsandbytes 4 bit
load_in_4bit:

# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere

# No AMP (automatic mixed precision)
bfloat16: true # require >=ampere
float16: true

# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
gpu_memory_limit: 20GiB
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
lora_on_cpu: true

# A list of one or more datasets to finetune the model with
datasets:
  # HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
  - path: vicgalle/alpaca-gpt4
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
    type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
    ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
    data_files: # Optional[str] path to source data files
    shards: # Optional[int] number of shards to split data into
    name: # Optional[str] name of dataset configuration to load
    train_on_split: train # Optional[str] name of dataset split to load from

    # Optional[str] fastchat conversation type, only used with type: sharegpt
    conversation:  # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
    field_human: # Optional[str]. Human key to use for conversation.
    field_model: # Optional[str]. Assistant key to use for conversation.

  # Custom user instruction prompt
  - path: repo
    type:
      # The below are defaults. only set what's needed if you use a different column name.
      system_prompt: ""
      system_format: "{system}"
      field_system: system
      field_instruction: instruction
      field_input: input
      field_output: output

      # Customizable to be single line or multi-line
      # Use {instruction}/{input} as key to be replaced
      # 'format' can include {input}
      format: |-
        User: {instruction} {input}
        Assistant:
      # 'no_input_format' cannot include {input}
      no_input_format: "{instruction} "

      # For `completion` datsets only, uses the provided field instead of `text` column
      field:

# A list of one or more datasets to eval the model with.
# You can use either test_datasets, or val_set_size, but not both.
test_datasets:
  - path: /workspace/data/eval.jsonl
    ds_type: json
    # You need to specify a split. For "json" datasets the default split is called "train".
    split: train
    type: completion
    data_files:
      - /workspace/data/eval.jsonl

# use RL training: dpo, ipo, kto_pair
rl:

# Saves the desired chat template to the tokenizer_config.json for easier inferencing
# Currently supports chatml and inst (mistral/mixtral)
chat_template: chatml
# Changes the default system message
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
# Axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# Push prepared dataset to hub
push_dataset_to_hub: # repo path
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
# if not set.
dataset_processes: # defaults to os.cpu_count() if not set
# Keep dataset in memory while preprocessing
# Only needed if cached dataset is taking too much storage
dataset_keep_in_memory:
# push checkpoints to hub
hub_model_id: # repo path to push finetuned model
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy:
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:

# The maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# Pad inputs so each step uses constant sized buffers
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
pad_to_sequence_len:
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing:
# Set to 'false' if getting errors during eval with sample_packing on.
eval_sample_packing:
# You can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
sample_packing_eff_est:
total_num_tokens:

# Passed through to transformers when loading the model when launched without accelerate
# Use `sequential` when training w/ model parallelism to limit memory
device_map:
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
max_memory:

# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# If you already have a lora model trained that you want to load, put that here.
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
lora_model_dir:

# LoRA hyperparameters
# For more details about the following options, see:
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
#  - k_proj
#  - o_proj
#  - gate_proj
#  - down_proj
#  - up_proj
lora_target_linear: # If true, will target all linear modules
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers

# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
lora_modules_to_save:
#  - embed_tokens
#  - lm_head

lora_fan_in_fan_out: false

peft:
  # Configuration options for loftq initialization for LoRA
  # https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
  loftq_config:
    loftq_bits:  # typically 4 bits

# ReLoRA configuration
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
relora_steps: # Number of steps per ReLoRA restart
relora_warmup_steps: # Number of per-restart warmup steps
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings

# wandb configuration if you're using it
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: # Your wandb project name
wandb_entity: # A wandb Team name if using a Team
wandb_watch:
wandb_name: # Set the name of your wandb run
wandb_run_id: # Set the ID of your wandb run
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training

# mlflow configuration if you're using it
mlflow_tracking_uri: # URI to mlflow
mlflow_experiment_name: # Your experiment name

# Where to save the full-finetuned model to
output_dir: ./completed-model

# Whether to use torch.compile and which backend to use
torch_compile:  # bool
torch_compile_backend:  # Optional[str]

# Training hyperparameters

# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
gradient_accumulation_steps: 1
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
micro_batch_size: 2
eval_batch_size:
num_epochs: 4
warmup_steps: 100  # cannot use with warmup_ratio
warmup_ratio: 0.05  # cannot use with warmup_steps
learning_rate: 0.00003
lr_quadratic_warmup:
logging_steps:
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
save_strategy: # Set to `no` to skip checkpoint saves
save_steps: # Leave empty to save at each epoch
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
save_total_limit: # Checkpoints saved at a time
# Maximum number of iterations to train for. It precedes num_epochs which means that
# if both are set, num_epochs will not be guaranteed.
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
max_steps:

eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_table_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128

loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)

# Save model as safetensors (require safetensors package)
save_safetensors:

# Whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# Group similarly sized data to minimize padding.
# May be slower to start, as it must download and sort the entire dataset.
# Note that training loss may have an oscillating pattern with this enabled.
group_by_length: false

# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false
# additional kwargs to pass to the trainer for gradient checkpointing
# gradient_checkpointing_kwargs:
#   use_reentrant: false

# Stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3

# Specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr

# For one_cycle optim
lr_div_factor: # Learning rate div factor

# For log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:

# Specify optimizer
# Valid values are driven by the Transformers OptimizerNames class, see:
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
#
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
# in the examples/ for your model and fine-tuning use case.
#
# Valid values for 'optimizer' include:
# - adamw_hf
# - adamw_torch
# - adamw_torch_fused
# - adamw_torch_xla
# - adamw_apex_fused
# - adafactor
# - adamw_anyprecision
# - sgd
# - adagrad
# - adamw_bnb_8bit
# - lion_8bit
# - lion_32bit
# - paged_adamw_32bit
# - paged_adamw_8bit
# - paged_lion_32bit
# - paged_lion_8bit
optimizer:
# Specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:

# Augmentation techniques
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
# currently only supported on Llama and Mistral
neftune_noise_alpha:

# Whether to bettertransformers
flash_optimum:
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention:
flash_attn_cross_entropy:  # Whether to use flash-attention cross entropy implementation - advanced use only
flash_attn_rms_norm:  # Whether to use flash-attention rms norm implementation - advanced use only
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
# Whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
s2_attention:
# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
auto_resume_from_checkpoints: false

# Don't mess with this, it's here for accelerate and torchrun
local_rank:

# Add or change special tokens.
# If you add tokens here, you don't need to add them to the `tokens` list.
special_tokens:
  # bos_token: "<s>"
  # eos_token: "</s>"
  # unk_token: "<unk>"

# Add extra tokens.
tokens:

# FSDP
fsdp:
fsdp_config:

# Deepspeed config path. e.g., deepspeed_configs/zero3.json
deepspeed:

# Advanced DDP Arguments
ddp_timeout:
ddp_bucket_cap_mb:
ddp_broadcast_buffers:

# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:

# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
pretraining_dataset:

# Debug mode
debug:

# Seed
seed:

# Allow overwrite yml config using from cli
strict:
```

</details>

<details>
<summary> Understanding of batch size and gradient accumulation steps </summary>
<br/>
Gradient accumulation means accumulating gradients over several mini-batches and updating the model weights afterward. When the samples in each batch are diverse, this technique doesn't significantly impact learning.

This method allows for effective training with larger effective batch sizes without needing proportionally larger memory. Here's why:

1. **Memory Consumption with Batch Size**: The primary reason increasing the batch size impacts memory is due to the storage requirements for intermediate activations. When you forward propagate a batch through a network, you have to store the activations at each layer for each sample in the batch, because these activations are used during backpropagation to compute gradients. Therefore, larger batches mean more activations, leading to greater GPU memory consumption.

2. **Gradient Accumulation**: With gradient accumulation, you're effectively simulating a larger batch size by accumulating gradients over several smaller batches (or micro-batches). However, at any given time, you're only forward and backward propagating a micro-batch. This means you only store activations for the micro-batch, not the full accumulated batch. As a result, you can simulate the effect of a larger batch size without the memory cost of storing activations for a large batch.

**Example 1:**
Micro batch size: 3
Gradient accumulation steps: 2
Number of GPUs: 3
Total batch size = 3 * 2 * 3 = 18

```
| GPU 1          | GPU 2          | GPU 3          |
|----------------|----------------|----------------|
| S1, S2, S3     | S4, S5, S6     | S7, S8, S9     |
| e1, e2, e3     | e4, e5, e6     | e7, e8, e9     |
|----------------|----------------|----------------|
| β†’ (accumulate) | β†’ (accumulate) | β†’ (accumulate) |
|----------------|----------------|----------------|
| S10, S11, S12  | S13, S14, S15  | S16, S17, S18  |
| e10, e11, e12  | e13, e14, e15  | e16, e17, e18  |
|----------------|----------------|----------------|
| β†’ (apply)      | β†’ (apply)      | β†’ (apply)      |

Accumulated gradient for the weight w1 after the second iteration (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 + e13 + e14 + e15 + e16 + e17 + e18

Weight update for w1:
w1_new = w1_old - learning rate x (Total gradient for w1 / 18)
```

**Example 2:**
Micro batch size: 2
Gradient accumulation steps: 1
Number of GPUs: 3
Total batch size = 2 * 1 * 3 = 6

```
| GPU 1     | GPU 2     | GPU 3     |
|-----------|-----------|-----------|
| S1, S2    | S3, S4    | S5, S6    |
| e1, e2    | e3, e4    | e5, e6    |
|-----------|-----------|-----------|
| β†’ (apply) | β†’ (apply) | β†’ (apply) |

Accumulated gradient for the weight w1 (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6

Weight update for w1:
w1_new = w1_old - learning rate Γ— (Total gradient for w1 / 6)
```

</details>

### Train

Run
```bash
accelerate launch -m axolotl.cli.train your_config.yml
```

#### Preprocess dataset

You can optionally pre-tokenize dataset with the following before finetuning.
This is recommended for large datasets.

- Set `dataset_prepared_path:` to a local folder for saving and loading pre-tokenized dataset.
- (Optional): Set `push_dataset_to_hub: hf_user/repo` to push it to Huggingface.
- (Optional): Use `--debug` to see preprocessed examples.

```bash
python -m axolotl.cli.preprocess your_config.yml
```

#### Multi-GPU

Below are the options available in axolotl for training with multiple GPUs. Note that DeepSpeed
is the recommended multi-GPU option currently because FSDP may experience
[loss instability](https://github.com/huggingface/transformers/issues/26498).

##### DeepSpeed

Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated

We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.

```yaml
deepspeed: deepspeed_configs/zero1.json
```

```shell
accelerate launch -m axolotl.cli.train examples/llama-2/config.py --deepspeed deepspeed_configs/zero1.json
```

##### FSDP

- llama FSDP
```yaml
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_offload_params: true
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
```

##### Weights & Biases Logging

Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.

- wandb options
```yaml
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
```

##### Special Tokens

It is important to have special tokens like delimiters, end-of-sequence, beginning-of-sequence in your tokenizer's vocabulary.  This will help you avoid tokenization issues and help your model train better.  You can do this in axolotl like this:

```yml
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
tokens: # these are delimiters
  - "<|im_start|>"
  - "<|im_end|>"
```

When you include these tokens in your axolotl config, axolotl adds these tokens to the tokenizer's vocabulary.

### Inference Playground

Axolotl allows you to load your model in an interactive terminal playground for quick experimentation.
The config file is the same config file used for training.

Pass the appropriate flag to the inference command, depending upon what kind of model was trained:

- Pretrained LORA:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
  ```
- Full weights finetune:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
  ```
- Full weights finetune w/ a prompt from a text file:
  ```bash
  cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
    --base_model="./completed-model" --prompter=None --load_in_8bit=True
  ```
-- With gradio hosting
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --gradio
  ```

Please use `--sample_packing False` if you have it on and receive the error similar to below:

> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1

### Merge LORA to base

The following command will merge your LORA adapater with your base model.  You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file.  The merged model is saved in the sub-directory `{lora_model_dir}/merged`.

```bash
python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
```

You may need to use the `gpu_memory_limit` and/or `lora_on_cpu` config options to avoid running out of memory. If you still run out of CUDA memory, you can try to merge in system RAM with

```bash
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
```

although this will be very slow, and using the config options above are recommended instead.

## Common Errors 🧰

See also the [FAQ's](./docs/faq.md) and [debugging guide](docs/debugging.md).

> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:

Please reduce any below
  - `micro_batch_size`
  - `eval_batch_size`
  - `gradient_accumulation_steps`
  - `sequence_len`

If it does not help, try running without deepspeed and without accelerate (replace "accelerate launch" with "python") in the command.

Using adamw_bnb_8bit might also save you some memory.

> `failed (exitcode: -9)`

Usually means your system has run out of system memory.
Similarly, you should consider reducing the same settings as when you run out of VRAM.
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.

> RuntimeError: expected scalar type Float but found Half

Try set `fp16: true`

> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...

Try to turn off xformers.

> accelerate config missing

It's safe to ignore it.

> NCCL Timeouts during training

See the [NCCL](docs/nccl.md) guide.


### Tokenization Mismatch b/w Inference & Training

For many formats, Axolotl constructs prompts by concatenating token ids _after_ tokenizing strings.  The reason for concatenating token ids rather than operating on strings is to maintain precise accounting for attention masks.

If you decode a prompt constructed by axolotl, you might see spaces between tokens (or lack thereof) that you do not expect, especially around delimiters and special tokens.  When you are starting out with a new format, you should always do the following:

1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines.  If they aren't the same adjust your inference server accordingly.
4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.

Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this.  See [this blog post](https://hamel.dev/notes/llm/05_tokenizer_gotchas.html) for a concrete example.

## Debugging Axolotl

See [this debugging guide](docs/debugging.md) for tips on debugging Axolotl, along with an example configuration for debugging with VSCode.

## Need help? πŸ™‹

Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we our community members can help you.

Need dedicated support? Please contact us at [βœ‰οΈwing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org) for dedicated support options.

## Badge ❀🏷️

Building something cool with Axolotl? Consider adding a badge to your model card.

```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Community Showcase

Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.

Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)

PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)

## Contributing 🀝

Please read the [contributing guide](./.github/CONTRIBUTING.md)

Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.

PRs are **greatly welcome**!

Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install

# test
pytest tests/
```

## Sponsors 🀝❀

OpenAccess AI Collective is run by volunteer contributors such as [winglian](https://github.com/winglian),
[NanoCode012](https://github.com/NanoCode012), [tmm1](https://github.com/tmm1),
[mhenrichsen](https://github.com/mhenrichsen), [casper-hansen](https://github.com/casper-hansen),
[hamelsmu](https://github.com/hamelsmu) and many more who help us accelerate forward by fixing bugs, answering
community questions and implementing new features. Axolotl needs donations from sponsors for the compute needed to
run our unit & integration tests, troubleshooting community issues, and providing bounties. If you love axolotl,
consider sponsoring the project via [GitHub Sponsors](https://github.com/sponsors/OpenAccess-AI-Collective),
[Ko-fi](https://ko-fi.com/axolotl_ai) or reach out directly to
[wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org).

---

#### πŸ’Ž Diamond Sponsors - [Contact directly](mailto:wing@openaccessaicollective.org)

---

#### πŸ₯‡ Gold Sponsors - $5000/mo

---

#### πŸ₯ˆ Silver Sponsors - $1000/mo

---

#### πŸ₯‰ Bronze Sponsors - $500/mo

---