Add: mlflow for experiment tracking (#1059) [skip ci]
Browse files* Update requirements.txt
adding mlflow
* Update __init__.py
Imports for mlflow
* Update README.md
* Create mlflow_.py (#1)
* Update README.md
* fix precommits
* Update README.md
Update mlflow_tracking_uri
* Update trainer_builder.py
update trainer building
* chore: lint
* make ternary a bit more readable
---------
Co-authored-by: Wing Lian <wing.lian@gmail.com>
- README.md +5 -1
- requirements.txt +1 -0
- src/axolotl/cli/__init__.py +4 -0
- src/axolotl/core/trainer_builder.py +6 -1
- src/axolotl/utils/mlflow_.py +18 -0
README.md
CHANGED
@@ -10,7 +10,7 @@ Features:
|
|
10 |
- Integrated with xformer, flash attention, rope scaling, and multipacking
|
11 |
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
|
12 |
- Easily run with Docker locally or on the cloud
|
13 |
-
- Log results and optionally checkpoints to wandb
|
14 |
- And more!
|
15 |
|
16 |
|
@@ -695,6 +695,10 @@ wandb_name: # Set the name of your wandb run
|
|
695 |
wandb_run_id: # Set the ID of your wandb run
|
696 |
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
697 |
|
|
|
|
|
|
|
|
|
698 |
# Where to save the full-finetuned model to
|
699 |
output_dir: ./completed-model
|
700 |
|
|
|
10 |
- Integrated with xformer, flash attention, rope scaling, and multipacking
|
11 |
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
|
12 |
- Easily run with Docker locally or on the cloud
|
13 |
+
- Log results and optionally checkpoints to wandb or mlflow
|
14 |
- And more!
|
15 |
|
16 |
|
|
|
695 |
wandb_run_id: # Set the ID of your wandb run
|
696 |
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
697 |
|
698 |
+
# mlflow configuration if you're using it
|
699 |
+
mlflow_tracking_uri: # URI to mlflow
|
700 |
+
mlflow_experiment_name: # Your experiment name
|
701 |
+
|
702 |
# Where to save the full-finetuned model to
|
703 |
output_dir: ./completed-model
|
704 |
|
requirements.txt
CHANGED
@@ -22,6 +22,7 @@ hf_transfer
|
|
22 |
colorama
|
23 |
numba
|
24 |
numpy>=1.24.4
|
|
|
25 |
# qlora things
|
26 |
bert-score==0.3.13
|
27 |
evaluate==0.4.0
|
|
|
22 |
colorama
|
23 |
numba
|
24 |
numpy>=1.24.4
|
25 |
+
mlflow
|
26 |
# qlora things
|
27 |
bert-score==0.3.13
|
28 |
evaluate==0.4.0
|
src/axolotl/cli/__init__.py
CHANGED
@@ -29,6 +29,7 @@ from axolotl.utils.config import normalize_config, validate_config
|
|
29 |
from axolotl.utils.data import prepare_dataset
|
30 |
from axolotl.utils.dict import DictDefault
|
31 |
from axolotl.utils.distributed import is_main_process
|
|
|
32 |
from axolotl.utils.models import load_tokenizer
|
33 |
from axolotl.utils.tokenization import check_dataset_labels
|
34 |
from axolotl.utils.trainer import prepare_optim_env
|
@@ -289,6 +290,9 @@ def load_cfg(config: Path = Path("examples/"), **kwargs):
|
|
289 |
normalize_config(cfg)
|
290 |
|
291 |
setup_wandb_env_vars(cfg)
|
|
|
|
|
|
|
292 |
return cfg
|
293 |
|
294 |
|
|
|
29 |
from axolotl.utils.data import prepare_dataset
|
30 |
from axolotl.utils.dict import DictDefault
|
31 |
from axolotl.utils.distributed import is_main_process
|
32 |
+
from axolotl.utils.mlflow_ import setup_mlflow_env_vars
|
33 |
from axolotl.utils.models import load_tokenizer
|
34 |
from axolotl.utils.tokenization import check_dataset_labels
|
35 |
from axolotl.utils.trainer import prepare_optim_env
|
|
|
290 |
normalize_config(cfg)
|
291 |
|
292 |
setup_wandb_env_vars(cfg)
|
293 |
+
|
294 |
+
setup_mlflow_env_vars(cfg)
|
295 |
+
|
296 |
return cfg
|
297 |
|
298 |
|
src/axolotl/core/trainer_builder.py
CHANGED
@@ -747,7 +747,12 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
747 |
False if self.cfg.ddp else None
|
748 |
)
|
749 |
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
|
750 |
-
|
|
|
|
|
|
|
|
|
|
|
751 |
training_arguments_kwargs["run_name"] = (
|
752 |
self.cfg.wandb_name if self.cfg.use_wandb else None
|
753 |
)
|
|
|
747 |
False if self.cfg.ddp else None
|
748 |
)
|
749 |
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
|
750 |
+
report_to = None
|
751 |
+
if self.cfg.use_wandb:
|
752 |
+
report_to = "wandb"
|
753 |
+
if self.cfg.use_mlflow:
|
754 |
+
report_to = "mlflow"
|
755 |
+
training_arguments_kwargs["report_to"] = report_to
|
756 |
training_arguments_kwargs["run_name"] = (
|
757 |
self.cfg.wandb_name if self.cfg.use_wandb else None
|
758 |
)
|
src/axolotl/utils/mlflow_.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module for mlflow utilities"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
from axolotl.utils.dict import DictDefault
|
6 |
+
|
7 |
+
|
8 |
+
def setup_mlflow_env_vars(cfg: DictDefault):
|
9 |
+
for key in cfg.keys():
|
10 |
+
if key.startswith("mlflow_"):
|
11 |
+
value = cfg.get(key, "")
|
12 |
+
|
13 |
+
if value and isinstance(value, str) and len(value) > 0:
|
14 |
+
os.environ[key.upper()] = value
|
15 |
+
|
16 |
+
# Enable mlflow if experiment name is present
|
17 |
+
if cfg.mlflow_experiment_name and len(cfg.mlflow_experiment_name) > 0:
|
18 |
+
cfg.use_mlflow = True
|