winglian commited on
Commit
68b227a
1 Parent(s): 03c6318

Mixtral multipack (#928)

Browse files

* mixtral multipack

* use mixtral model

* sample yml

* calculate cu_seqlens properly

* use updated flash ettention setting

* attn var checks

* force use of flash attention 2 for packing

* lint

* disable future fix for now

* update support table

.mypy.ini CHANGED
@@ -8,6 +8,9 @@ ignore_missing_imports = True
8
  [mypy-axolotl.monkeypatch.*]
9
  ignore_errors = True
10
 
 
 
 
11
  [mypy-axolotl.models.phi.*]
12
  ignore_errors = True
13
 
 
8
  [mypy-axolotl.monkeypatch.*]
9
  ignore_errors = True
10
 
11
+ [mypy-axolotl.models.mixtral.*]
12
+ ignore_errors = True
13
+
14
  [mypy-axolotl.models.phi.*]
15
  ignore_errors = True
16
 
README.md CHANGED
@@ -65,19 +65,21 @@ Features:
65
 
66
  ## Axolotl supports
67
 
68
- | | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
69
- |----------|:----------|:-----|-------|------|-------------------|------------|--------------|
70
- | llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
71
- | Pythia | ✅ | ✅ | ✅ | | | | |
72
- | cerebras | ✅ | ✅ | ✅ | | | | ❓ |
73
- | btlm | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
74
- | mpt | ✅ | | | ❌ | ❌ | ❌ | ❓ |
75
- | falcon | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
76
- | gpt-j | ✅ | | | ❌ | ❌ | | ❓ |
77
- | XGen | ✅ | | ✅ | | | | |
78
- | phi | ✅ | ✅ | ✅ | | | ❓ | ❓ |
79
- | RWKV | ✅ | ❓ | | ❓ | ❓ | ❓ | |
80
- | Qwen | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
 
 
81
 
82
 
83
  ## Quickstart ⚡
 
65
 
66
  ## Axolotl supports
67
 
68
+ | | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
69
+ |-------------|:----------|:-----|-------|------|-------------------|------------|--------------|
70
+ | llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
71
+ | Mistral | ✅ | ✅ | ✅ | | | | |
72
+ | Mixtral-MoE | ✅ | ✅ | ✅ | | | | ❓ |
73
+ | Pythia | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
74
+ | cerebras | ✅ | | | ❌ | ❌ | ❌ | ❓ |
75
+ | btlm | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
76
+ | mpt | ✅ | | | ❌ | ❌ | | ❓ |
77
+ | falcon | ✅ | | ✅ | | | | |
78
+ | gpt-j | ✅ | ✅ | ✅ | | | ❓ | ❓ |
79
+ | XGen | ✅ | ❓ | | ❓ | ❓ | ❓ | |
80
+ | phi | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
81
+ | RWKV | ✅ | ❓ | ❓ | ❓ | ❓ | ❓ | ❓ |
82
+ | Qwen | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
83
 
84
 
85
  ## Quickstart ⚡
docker/Dockerfile-runpod CHANGED
@@ -4,6 +4,7 @@ FROM winglian/axolotl:$BASE_TAG
4
  ENV HF_DATASETS_CACHE="/workspace/data/huggingface-cache/datasets"
5
  ENV HUGGINGFACE_HUB_CACHE="/workspace/data/huggingface-cache/hub"
6
  ENV TRANSFORMERS_CACHE="/workspace/data/huggingface-cache/hub"
 
7
 
8
  COPY scripts/runpod-entrypoint.sh /root/runpod-entrypoint.sh
9
 
 
4
  ENV HF_DATASETS_CACHE="/workspace/data/huggingface-cache/datasets"
5
  ENV HUGGINGFACE_HUB_CACHE="/workspace/data/huggingface-cache/hub"
6
  ENV TRANSFORMERS_CACHE="/workspace/data/huggingface-cache/hub"
7
+ ENV HF_HOME="/workspace/data/huggingface-cache/hub"
8
 
9
  COPY scripts/runpod-entrypoint.sh /root/runpod-entrypoint.sh
10
 
examples/mistral/mixtral.yml ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: DiscoResearch/mixtral-7b-8expert
2
+ model_type: MixtralForCausalLM
3
+ tokenizer_type: LlamaTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: true
7
+ strict: false
8
+
9
+ datasets:
10
+ - path: tatsu-lab/alpaca
11
+ type: alpaca
12
+ dataset_prepared_path: last_run_prepared
13
+ val_set_size: 0.0
14
+ output_dir: ./qlora-out
15
+
16
+ adapter: qlora
17
+ lora_model_dir:
18
+
19
+ sequence_len: 4096
20
+ sample_packing: true
21
+ pad_to_sequence_len: true
22
+
23
+ lora_r: 32
24
+ lora_alpha: 16
25
+ lora_dropout: 0.05
26
+ lora_target_linear: true
27
+ lora_fan_in_fan_out:
28
+ #lora_target_modules:
29
+ # - gate
30
+ # - q_proj
31
+ # - k_proj
32
+ # - v_proj
33
+ # - o_proj
34
+ # - w1
35
+ # - w2
36
+ # - w3
37
+
38
+ wandb_project:
39
+ wandb_entity:
40
+ wandb_watch:
41
+ wandb_name:
42
+ wandb_log_model:
43
+
44
+ gradient_accumulation_steps: 2
45
+ micro_batch_size: 1
46
+ num_epochs: 1
47
+ optimizer: adamw_bnb_8bit
48
+ lr_scheduler: cosine
49
+ learning_rate: 0.0002
50
+
51
+ train_on_inputs: false
52
+ group_by_length: false
53
+ bf16: true
54
+ fp16: false
55
+ tf32: false
56
+
57
+ gradient_checkpointing: true
58
+ early_stopping_patience:
59
+ resume_from_checkpoint:
60
+ local_rank:
61
+ logging_steps: 1
62
+ xformers_attention:
63
+ flash_attention: true
64
+
65
+ loss_watchdog_threshold: 5.0
66
+ loss_watchdog_patience: 3
67
+
68
+ warmup_steps: 10
69
+ eval_steps:
70
+ eval_table_size:
71
+ eval_table_max_new_tokens: 128
72
+ save_steps:
73
+ debug:
74
+ deepspeed: deepspeed/zero2.json
75
+ weight_decay: 0.0
76
+ fsdp:
77
+ fsdp_config:
78
+ special_tokens:
src/axolotl/models/mixtral/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """
2
+ Custom modeling code for mixtral
3
+ """
4
+
5
+ from .configuration_moe_mistral import MixtralConfig # noqa
6
+ from .modeling_moe_mistral import MixtralForCausalLM # noqa
src/axolotl/models/mixtral/configuration_moe_mistral.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mistral model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
24
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class MixtralConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
31
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
33
+
34
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
35
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`MistralModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 14336):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ num_key_value_heads (`int`, *optional*, defaults to 8):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
63
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
64
+ allows sequence of up to 4096*32 tokens.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*):
73
+ The id of the padding token.
74
+ bos_token_id (`int`, *optional*, defaults to 1):
75
+ The id of the "beginning-of-sequence" token.
76
+ eos_token_id (`int`, *optional*, defaults to 2):
77
+ The id of the "end-of-sequence" token.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether the model's input and output word embeddings should be tied.
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ sliding_window (`int`, *optional*, defaults to 4096):
83
+ Sliding window attention window size. If not specified, will default to `4096`.
84
+ attention_dropout (`float`, *optional*, defaults to 0.0):
85
+ The dropout ratio for the attention probabilities.
86
+
87
+ ```python
88
+ >>> from transformers import MistralModel, MistralConfig
89
+
90
+ >>> # Initializing a Mistral 7B style configuration
91
+ >>> configuration = MixtralConfig()
92
+
93
+ >>> # Initializing a model from the Mistral 7B style configuration
94
+ >>> model = MixtralModel(configuration)
95
+
96
+ >>> # Accessing the model configuration
97
+ >>> configuration = model.config
98
+ ```"""
99
+
100
+ model_type = "mistral"
101
+ keys_to_ignore_at_inference = ["past_key_values"]
102
+
103
+ def __init__(
104
+ self,
105
+ vocab_size=32000,
106
+ hidden_size=4096,
107
+ intermediate_size=14336,
108
+ num_hidden_layers=32,
109
+ num_attention_heads=32,
110
+ num_key_value_heads=8,
111
+ hidden_act="silu",
112
+ max_position_embeddings=4096 * 32,
113
+ initializer_range=0.02,
114
+ rms_norm_eps=1e-6,
115
+ use_cache=True,
116
+ pad_token_id=None,
117
+ bos_token_id=1,
118
+ eos_token_id=2,
119
+ tie_word_embeddings=False,
120
+ rope_theta=10000.0,
121
+ attention_dropout=0.0,
122
+ num_experts_per_token=2,
123
+ num_experts=8,
124
+ **kwargs,
125
+ ):
126
+ self.vocab_size = vocab_size
127
+ self.max_position_embeddings = max_position_embeddings
128
+ self.hidden_size = hidden_size
129
+ self.intermediate_size = intermediate_size
130
+ self.num_hidden_layers = num_hidden_layers
131
+ self.num_attention_heads = num_attention_heads
132
+
133
+ # for backward compatibility
134
+ if num_key_value_heads is None:
135
+ num_key_value_heads = num_attention_heads
136
+
137
+ self.num_key_value_heads = num_key_value_heads
138
+ self.hidden_act = hidden_act
139
+ self.initializer_range = initializer_range
140
+ self.rms_norm_eps = rms_norm_eps
141
+ self.use_cache = use_cache
142
+ self.rope_theta = rope_theta
143
+ self.attention_dropout = attention_dropout
144
+ self.num_experts = num_experts
145
+ self.num_experts_per_token = num_experts_per_token
146
+
147
+ # pylint: disable=duplicate-code
148
+ super().__init__(
149
+ pad_token_id=pad_token_id,
150
+ bos_token_id=bos_token_id,
151
+ eos_token_id=eos_token_id,
152
+ tie_word_embeddings=tie_word_embeddings,
153
+ **kwargs,
154
+ )
src/axolotl/models/mixtral/modeling_moe_mistral.py ADDED
@@ -0,0 +1,1506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pylint: skip-file
2
+ # coding=utf-8
3
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """ PyTorch Mistral model."""
22
+ import inspect
23
+ import math
24
+ import warnings
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from einops import rearrange
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ SequenceClassifierOutputWithPast,
39
+ )
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.utils import (
42
+ add_start_docstrings,
43
+ add_start_docstrings_to_model_forward,
44
+ is_flash_attn_2_available,
45
+ is_flash_attn_greater_or_equal_2_10,
46
+ logging,
47
+ replace_return_docstrings,
48
+ )
49
+
50
+ from ...monkeypatch.utils import get_cu_seqlens_from_pos_ids
51
+ from .configuration_moe_mistral import MixtralConfig
52
+
53
+ if is_flash_attn_2_available():
54
+ from flash_attn import (
55
+ flash_attn_func,
56
+ flash_attn_varlen_func,
57
+ flash_attn_varlen_qkvpacked_func,
58
+ )
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+
61
+ _flash_supports_window_size = "window_size" in list(
62
+ inspect.signature(flash_attn_func).parameters
63
+ )
64
+
65
+
66
+ logger = logging.get_logger(__name__)
67
+
68
+ _CONFIG_FOR_DOC = "MixtralConfig"
69
+
70
+
71
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(
77
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
78
+ )
79
+ return (
80
+ indices,
81
+ cu_seqlens,
82
+ max_seqlen_in_batch,
83
+ )
84
+
85
+
86
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
87
+ class MistralRMSNorm(nn.Module):
88
+ def __init__(self, hidden_size, eps=1e-6):
89
+ """
90
+ MistralRMSNorm is equivalent to T5LayerNorm
91
+ """
92
+ super().__init__()
93
+ self.weight = nn.Parameter(torch.ones(hidden_size))
94
+ self.variance_epsilon = eps
95
+
96
+ def forward(self, hidden_states):
97
+ input_dtype = hidden_states.dtype
98
+ hidden_states = hidden_states.to(torch.float32)
99
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
100
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
101
+ return self.weight * hidden_states.to(input_dtype)
102
+
103
+
104
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
105
+ class MistralRotaryEmbedding(nn.Module):
106
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
107
+ super().__init__()
108
+
109
+ self.dim = dim
110
+ self.max_position_embeddings = max_position_embeddings
111
+ self.base = base
112
+ inv_freq = 1.0 / (
113
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
114
+ )
115
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
116
+
117
+ # Build here to make `torch.jit.trace` work.
118
+ self._set_cos_sin_cache(
119
+ seq_len=max_position_embeddings,
120
+ device=self.inv_freq.device,
121
+ dtype=torch.get_default_dtype(),
122
+ )
123
+
124
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
125
+ self.max_seq_len_cached = seq_len
126
+ t = torch.arange(
127
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
128
+ )
129
+
130
+ freqs = torch.outer(t, self.inv_freq)
131
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
132
+ emb = torch.cat((freqs, freqs), dim=-1)
133
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
134
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
135
+
136
+ def forward(self, x, seq_len=None):
137
+ # x: [bs, num_attention_heads, seq_len, head_size]
138
+ if seq_len > self.max_seq_len_cached:
139
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
140
+
141
+ return (
142
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
143
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
144
+ )
145
+
146
+
147
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
148
+ def rotate_half(x):
149
+ """Rotates half the hidden dims of the input."""
150
+ x1 = x[..., : x.shape[-1] // 2]
151
+ x2 = x[..., x.shape[-1] // 2 :]
152
+ return torch.cat((-x2, x1), dim=-1)
153
+
154
+
155
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
156
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
157
+ """Applies Rotary Position Embedding to the query and key tensors.
158
+
159
+ Args:
160
+ q (`torch.Tensor`): The query tensor.
161
+ k (`torch.Tensor`): The key tensor.
162
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
163
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
164
+ position_ids (`torch.Tensor`):
165
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
166
+ used to pass offsetted position ids when working with a KV-cache.
167
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
168
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
169
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
170
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
171
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
172
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
173
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
174
+ Returns:
175
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
176
+ """
177
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
178
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
179
+ q_embed = (q * cos) + (rotate_half(q) * sin)
180
+ k_embed = (k * cos) + (rotate_half(k) * sin)
181
+ return q_embed, k_embed
182
+
183
+
184
+ class FeedForward(nn.Module):
185
+ def __init__(self, config):
186
+ """
187
+ Initialize the FeedForward module.
188
+
189
+ Args:
190
+ dim (int): Input dimension.
191
+ hidden_dim (int): Hidden dimension of the feedforward layer.
192
+ multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
193
+ ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
194
+
195
+ Attributes:
196
+ w1 (ColumnParallelLinear): Linear transformation for the first layer.
197
+ w2 (RowParallelLinear): Linear transformation for the second layer.
198
+ w3 (ColumnParallelLinear): Linear transformation for the third layer.
199
+
200
+ """
201
+ super().__init__()
202
+
203
+ self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
204
+ self.w2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
205
+ self.w3 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
206
+
207
+ def forward(self, x):
208
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
209
+
210
+
211
+ class MoE(nn.Module):
212
+ def __init__(
213
+ self,
214
+ config,
215
+ ):
216
+ super().__init__()
217
+ self.config = config
218
+ num_experts = config.num_experts
219
+ self.experts = nn.ModuleList([FeedForward(config) for i in range(num_experts)])
220
+ self.gate = nn.Linear(config.hidden_size, num_experts, bias=False)
221
+ self.num_experts_per_token = config.num_experts_per_token
222
+
223
+ def forward(self, x):
224
+ orig_shape = x.shape
225
+ x = x.view(-1, x.shape[-1])
226
+
227
+ scores = self.gate(x)
228
+ expert_weights, expert_indices = torch.topk(
229
+ scores, self.num_experts_per_token, dim=-1
230
+ )
231
+ expert_weights = expert_weights.softmax(dim=-1)
232
+ flat_expert_indices = expert_indices.view(-1)
233
+
234
+ x = x.repeat_interleave(self.num_experts_per_token, dim=0)
235
+ y = torch.empty_like(x)
236
+ for i, expert in enumerate(self.experts):
237
+ y[flat_expert_indices == i] = expert(x[flat_expert_indices == i])
238
+ y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(
239
+ dim=1
240
+ )
241
+ return y.view(*orig_shape)
242
+
243
+
244
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
245
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
246
+ """
247
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
248
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
249
+ """
250
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
251
+ if n_rep == 1:
252
+ return hidden_states
253
+ hidden_states = hidden_states[:, :, None, :, :].expand(
254
+ batch, num_key_value_heads, n_rep, slen, head_dim
255
+ )
256
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
257
+
258
+
259
+ class MistralAttention(nn.Module):
260
+ """
261
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
262
+ and "Generating Long Sequences with Sparse Transformers".
263
+ """
264
+
265
+ def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
266
+ super().__init__()
267
+ self.config = config
268
+ self.layer_idx = layer_idx
269
+ if layer_idx is None:
270
+ logger.warning_once(
271
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
272
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
273
+ "when creating this class."
274
+ )
275
+
276
+ self.hidden_size = config.hidden_size
277
+ self.num_heads = config.num_attention_heads
278
+ self.head_dim = self.hidden_size // self.num_heads
279
+ self.num_key_value_heads = config.num_key_value_heads
280
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
281
+ self.max_position_embeddings = config.max_position_embeddings
282
+ self.rope_theta = config.rope_theta
283
+ self.is_causal = True
284
+ self.attention_dropout = config.attention_dropout
285
+
286
+ if (self.head_dim * self.num_heads) != self.hidden_size:
287
+ raise ValueError(
288
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
289
+ f" and `num_heads`: {self.num_heads})."
290
+ )
291
+ self.q_proj = nn.Linear(
292
+ self.hidden_size, self.num_heads * self.head_dim, bias=False
293
+ )
294
+ self.k_proj = nn.Linear(
295
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
296
+ )
297
+ self.v_proj = nn.Linear(
298
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
299
+ )
300
+ self.o_proj = nn.Linear(
301
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
302
+ )
303
+
304
+ self.rotary_emb = MistralRotaryEmbedding(
305
+ self.head_dim,
306
+ max_position_embeddings=self.max_position_embeddings,
307
+ base=self.rope_theta,
308
+ )
309
+
310
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
311
+ return (
312
+ tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
313
+ .transpose(1, 2)
314
+ .contiguous()
315
+ )
316
+
317
+ def forward(
318
+ self,
319
+ hidden_states: torch.Tensor,
320
+ attention_mask: Optional[torch.Tensor] = None,
321
+ position_ids: Optional[torch.LongTensor] = None,
322
+ past_key_value: Optional[Cache] = None,
323
+ output_attentions: bool = False,
324
+ use_cache: bool = False,
325
+ **kwargs,
326
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
327
+ if "padding_mask" in kwargs:
328
+ warnings.warn(
329
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
330
+ )
331
+ bsz, q_len, _ = hidden_states.size()
332
+
333
+ query_states = self.q_proj(hidden_states)
334
+ key_states = self.k_proj(hidden_states)
335
+ value_states = self.v_proj(hidden_states)
336
+
337
+ query_states = query_states.view(
338
+ bsz, q_len, self.num_heads, self.head_dim
339
+ ).transpose(1, 2)
340
+ key_states = key_states.view(
341
+ bsz, q_len, self.num_key_value_heads, self.head_dim
342
+ ).transpose(1, 2)
343
+ value_states = value_states.view(
344
+ bsz, q_len, self.num_key_value_heads, self.head_dim
345
+ ).transpose(1, 2)
346
+
347
+ kv_seq_len = key_states.shape[-2]
348
+ if past_key_value is not None:
349
+ if self.layer_idx is None:
350
+ raise ValueError(
351
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
352
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
353
+ "with a layer index."
354
+ )
355
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
356
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
357
+ query_states, key_states = apply_rotary_pos_emb(
358
+ query_states, key_states, cos, sin, position_ids
359
+ )
360
+
361
+ if past_key_value is not None:
362
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
363
+ key_states, value_states = past_key_value.update(
364
+ key_states, value_states, self.layer_idx, cache_kwargs
365
+ )
366
+
367
+ # repeat k/v heads if n_kv_heads < n_heads
368
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
369
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
370
+
371
+ attn_weights = torch.matmul(
372
+ query_states, key_states.transpose(2, 3)
373
+ ) / math.sqrt(self.head_dim)
374
+
375
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
376
+ raise ValueError(
377
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
378
+ f" {attn_weights.size()}"
379
+ )
380
+
381
+ if attention_mask is not None:
382
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
383
+ raise ValueError(
384
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
385
+ )
386
+
387
+ attn_weights = attn_weights + attention_mask
388
+
389
+ # upcast attention to fp32
390
+ attn_weights = nn.functional.softmax(
391
+ attn_weights, dim=-1, dtype=torch.float32
392
+ ).to(query_states.dtype)
393
+ attn_weights = nn.functional.dropout(
394
+ attn_weights, p=self.attention_dropout, training=self.training
395
+ )
396
+ attn_output = torch.matmul(attn_weights, value_states)
397
+
398
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
399
+ raise ValueError(
400
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
401
+ f" {attn_output.size()}"
402
+ )
403
+
404
+ attn_output = attn_output.transpose(1, 2).contiguous()
405
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
406
+
407
+ attn_output = self.o_proj(attn_output)
408
+
409
+ if not output_attentions:
410
+ attn_weights = None
411
+
412
+ return attn_output, attn_weights, past_key_value
413
+
414
+
415
+ class MistralFlashAttention2(MistralAttention):
416
+ """
417
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
418
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
419
+ flash attention and deal with padding tokens in case the input contains any of them.
420
+ """
421
+
422
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
423
+ def __init__(self, *args, **kwargs):
424
+ super().__init__(*args, **kwargs)
425
+
426
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
427
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
428
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
429
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
430
+
431
+ def forward(
432
+ self,
433
+ hidden_states: torch.Tensor,
434
+ attention_mask: Optional[torch.Tensor] = None,
435
+ position_ids: Optional[torch.LongTensor] = None,
436
+ past_key_value: Optional[Cache] = None,
437
+ output_attentions: bool = False,
438
+ use_cache: bool = False,
439
+ cu_seqlens: Optional[torch.Tensor] = None,
440
+ max_seqlen: Optional[torch.Tensor] = None,
441
+ **kwargs,
442
+ ):
443
+ if "padding_mask" in kwargs:
444
+ warnings.warn(
445
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
446
+ )
447
+
448
+ # overwrite attention_mask with padding_mask
449
+ attention_mask = kwargs.pop("padding_mask")
450
+ bsz, q_len, _ = hidden_states.size()
451
+
452
+ query_states = self.q_proj(hidden_states)
453
+ key_states = self.k_proj(hidden_states)
454
+ value_states = self.v_proj(hidden_states)
455
+
456
+ query_states = query_states.view(
457
+ bsz, q_len, self.num_heads, self.head_dim
458
+ ).transpose(1, 2)
459
+ key_states = key_states.view(
460
+ bsz, q_len, self.num_key_value_heads, self.head_dim
461
+ ).transpose(1, 2)
462
+ value_states = value_states.view(
463
+ bsz, q_len, self.num_key_value_heads, self.head_dim
464
+ ).transpose(1, 2)
465
+
466
+ kv_seq_len = key_states.shape[-2]
467
+ if past_key_value is not None:
468
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
469
+
470
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
471
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
472
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
473
+
474
+ query_states, key_states = apply_rotary_pos_emb(
475
+ query_states, key_states, cos, sin, position_ids
476
+ )
477
+
478
+ use_sliding_windows = (
479
+ _flash_supports_window_size
480
+ and getattr(self.config, "sliding_window", None) is not None
481
+ and kv_seq_len > self.config.sliding_window
482
+ )
483
+
484
+ if not _flash_supports_window_size:
485
+ logger.warning_once(
486
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
487
+ " make sure to upgrade flash-attn library."
488
+ )
489
+
490
+ if past_key_value is not None:
491
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
492
+ if (
493
+ getattr(self.config, "sliding_window", None) is not None
494
+ and kv_seq_len > self.config.sliding_window
495
+ ):
496
+ slicing_tokens = 1 - self.config.sliding_window
497
+
498
+ past_key = past_key_value[0]
499
+ past_value = past_key_value[1]
500
+
501
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
502
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
503
+
504
+ if past_key.shape[-2] != self.config.sliding_window - 1:
505
+ raise ValueError(
506
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
507
+ f" {past_key.shape}"
508
+ )
509
+
510
+ past_key_value = (past_key, past_value)
511
+
512
+ if attention_mask is not None:
513
+ attention_mask = attention_mask[:, slicing_tokens:]
514
+ attention_mask = torch.cat(
515
+ [attention_mask, torch.ones_like(attention_mask[:, -1:])],
516
+ dim=-1,
517
+ )
518
+
519
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
520
+ key_states, value_states = past_key_value.update(
521
+ key_states, value_states, self.layer_idx, cache_kwargs
522
+ )
523
+
524
+ # repeat k/v heads if n_kv_heads < n_heads
525
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
526
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
527
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
528
+
529
+ if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1:
530
+ # special handling using sample packing
531
+ qkv = torch.stack(
532
+ [query_states, key_states, value_states], dim=2
533
+ ) # [bsz, nh, 3, q_len, hd]
534
+ qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
535
+ qkv = rearrange(qkv, "b s ... -> (b s) ...")
536
+
537
+ attn_output = flash_attn_varlen_qkvpacked_func(
538
+ qkv,
539
+ cu_seqlens,
540
+ max_seqlen,
541
+ dropout_p=dropout_rate,
542
+ softmax_scale=None,
543
+ causal=True,
544
+ )
545
+ attn_output = rearrange(attn_output, "(b s) ... -> b s ...", b=bsz)
546
+ else:
547
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
548
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
549
+ # cast them back in float16 just to be sure everything works as expected.
550
+ input_dtype = query_states.dtype
551
+ if input_dtype == torch.float32:
552
+ # Handle the case where the model is quantized
553
+ if hasattr(self.config, "_pre_quantization_dtype"):
554
+ target_dtype = self.config._pre_quantization_dtype
555
+ else:
556
+ target_dtype = self.q_proj.weight.dtype
557
+
558
+ logger.warning_once(
559
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
560
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
561
+ f" {target_dtype}."
562
+ )
563
+
564
+ query_states = query_states.to(target_dtype)
565
+ key_states = key_states.to(target_dtype)
566
+ value_states = value_states.to(target_dtype)
567
+
568
+ # Reashape to the expected shape for Flash Attention
569
+ query_states = query_states.transpose(1, 2)
570
+ key_states = key_states.transpose(1, 2)
571
+ value_states = value_states.transpose(1, 2)
572
+
573
+ attn_output = self._flash_attention_forward(
574
+ query_states,
575
+ key_states,
576
+ value_states,
577
+ attention_mask,
578
+ q_len,
579
+ dropout=dropout_rate,
580
+ use_sliding_windows=use_sliding_windows,
581
+ )
582
+
583
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
584
+ attn_output = self.o_proj(attn_output)
585
+
586
+ if not output_attentions:
587
+ attn_weights = None
588
+
589
+ return attn_output, attn_weights, past_key_value
590
+
591
+ def _flash_attention_forward(
592
+ self,
593
+ query_states,
594
+ key_states,
595
+ value_states,
596
+ attention_mask,
597
+ query_length,
598
+ dropout=0.0,
599
+ softmax_scale=None,
600
+ use_sliding_windows=False,
601
+ ):
602
+ """
603
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
604
+ first unpad the input, then computes the attention scores and pad the final attention scores.
605
+
606
+ Args:
607
+ query_states (`torch.Tensor`):
608
+ Input query states to be passed to Flash Attention API
609
+ key_states (`torch.Tensor`):
610
+ Input key states to be passed to Flash Attention API
611
+ value_states (`torch.Tensor`):
612
+ Input value states to be passed to Flash Attention API
613
+ attention_mask (`torch.Tensor`):
614
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
615
+ position of padding tokens and 1 for the position of non-padding tokens.
616
+ dropout (`int`, *optional*):
617
+ Attention dropout
618
+ softmax_scale (`float`, *optional*):
619
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
620
+ use_sliding_windows (`bool`, *optional*):
621
+ Whether to activate sliding window attention.
622
+ """
623
+ if not self._flash_attn_uses_top_left_mask:
624
+ causal = self.is_causal
625
+ else:
626
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
627
+ causal = self.is_causal and query_length != 1
628
+
629
+ # Contains at least one padding token in the sequence
630
+ if attention_mask is not None:
631
+ batch_size = query_states.shape[0]
632
+ (
633
+ query_states,
634
+ key_states,
635
+ value_states,
636
+ indices_q,
637
+ cu_seq_lens,
638
+ max_seq_lens,
639
+ ) = self._upad_input(
640
+ query_states, key_states, value_states, attention_mask, query_length
641
+ )
642
+
643
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
644
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
645
+
646
+ if not use_sliding_windows:
647
+ attn_output_unpad = flash_attn_varlen_func(
648
+ query_states,
649
+ key_states,
650
+ value_states,
651
+ cu_seqlens_q=cu_seqlens_q,
652
+ cu_seqlens_k=cu_seqlens_k,
653
+ max_seqlen_q=max_seqlen_in_batch_q,
654
+ max_seqlen_k=max_seqlen_in_batch_k,
655
+ dropout_p=dropout,
656
+ softmax_scale=softmax_scale,
657
+ causal=causal,
658
+ )
659
+ else:
660
+ attn_output_unpad = flash_attn_varlen_func(
661
+ query_states,
662
+ key_states,
663
+ value_states,
664
+ cu_seqlens_q=cu_seqlens_q,
665
+ cu_seqlens_k=cu_seqlens_k,
666
+ max_seqlen_q=max_seqlen_in_batch_q,
667
+ max_seqlen_k=max_seqlen_in_batch_k,
668
+ dropout_p=dropout,
669
+ softmax_scale=softmax_scale,
670
+ causal=causal,
671
+ window_size=(
672
+ self.config.sliding_window,
673
+ self.config.sliding_window,
674
+ ),
675
+ )
676
+
677
+ attn_output = pad_input(
678
+ attn_output_unpad, indices_q, batch_size, query_length
679
+ )
680
+ else:
681
+ if not use_sliding_windows:
682
+ attn_output = flash_attn_func(
683
+ query_states,
684
+ key_states,
685
+ value_states,
686
+ dropout,
687
+ softmax_scale=softmax_scale,
688
+ causal=causal,
689
+ )
690
+ else:
691
+ attn_output = flash_attn_func(
692
+ query_states,
693
+ key_states,
694
+ value_states,
695
+ dropout,
696
+ softmax_scale=softmax_scale,
697
+ causal=causal,
698
+ window_size=(
699
+ self.config.sliding_window,
700
+ self.config.sliding_window,
701
+ ),
702
+ )
703
+
704
+ return attn_output
705
+
706
+ def _upad_input(
707
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
708
+ ):
709
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
710
+
711
+ # On the first iteration we need to properly re-create the padding mask
712
+ # by slicing it on the proper place
713
+ if kv_seq_len != attention_mask.shape[-1]:
714
+ attention_mask_num_tokens = attention_mask.shape[-1]
715
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
716
+
717
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
718
+
719
+ key_layer = index_first_axis(
720
+ key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
721
+ )
722
+ value_layer = index_first_axis(
723
+ value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
724
+ )
725
+
726
+ if query_length == kv_seq_len:
727
+ query_layer = index_first_axis(
728
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim),
729
+ indices_k,
730
+ )
731
+ cu_seqlens_q = cu_seqlens_k
732
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
733
+ indices_q = indices_k
734
+ elif query_length == 1:
735
+ max_seqlen_in_batch_q = 1
736
+ cu_seqlens_q = torch.arange(
737
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
738
+ ) # There is a memcpy here, that is very bad.
739
+ indices_q = cu_seqlens_q[:-1]
740
+ query_layer = query_layer.squeeze(1)
741
+ else:
742
+ # The -q_len: slice assumes left padding.
743
+ attention_mask = attention_mask[:, -query_length:]
744
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
745
+ query_layer, attention_mask
746
+ )
747
+
748
+ return (
749
+ query_layer,
750
+ key_layer,
751
+ value_layer,
752
+ indices_q,
753
+ (cu_seqlens_q, cu_seqlens_k),
754
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
755
+ )
756
+
757
+
758
+ class MixtralDecoderLayer(nn.Module):
759
+ def __init__(self, config: MixtralConfig, layer_idx: int):
760
+ super().__init__()
761
+ self.hidden_size = config.hidden_size
762
+ self.self_attn = MistralFlashAttention2(config, layer_idx=layer_idx)
763
+ self.mlp = MoE(config)
764
+ self.input_layernorm = MistralRMSNorm(
765
+ config.hidden_size, eps=config.rms_norm_eps
766
+ )
767
+ self.post_attention_layernorm = MistralRMSNorm(
768
+ config.hidden_size, eps=config.rms_norm_eps
769
+ )
770
+
771
+ def forward(
772
+ self,
773
+ hidden_states: torch.Tensor,
774
+ attention_mask: Optional[torch.Tensor] = None,
775
+ position_ids: Optional[torch.LongTensor] = None,
776
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
777
+ output_attentions: Optional[bool] = False,
778
+ use_cache: Optional[bool] = False,
779
+ cu_seqlens: Optional[torch.Tensor] = None,
780
+ max_seqlen: Optional[torch.Tensor] = None,
781
+ **kwargs,
782
+ ) -> Tuple[
783
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
784
+ ]:
785
+ if "padding_mask" in kwargs:
786
+ warnings.warn(
787
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
788
+ )
789
+ """
790
+ Args:
791
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
792
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
793
+ `(batch, sequence_length)` where padding elements are indicated by 0.
794
+ output_attentions (`bool`, *optional*):
795
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
796
+ returned tensors for more detail.
797
+ use_cache (`bool`, *optional*):
798
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
799
+ (see `past_key_values`).
800
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
801
+ """
802
+
803
+ residual = hidden_states
804
+
805
+ hidden_states = self.input_layernorm(hidden_states)
806
+
807
+ # Self Attention
808
+ # pylint: disable=duplicate-code
809
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
810
+ hidden_states=hidden_states,
811
+ attention_mask=attention_mask,
812
+ position_ids=position_ids,
813
+ past_key_value=past_key_value,
814
+ output_attentions=output_attentions,
815
+ use_cache=use_cache,
816
+ cu_seqlens=cu_seqlens,
817
+ max_seqlen=max_seqlen,
818
+ )
819
+ hidden_states = residual + hidden_states
820
+
821
+ # Fully Connected
822
+ residual = hidden_states
823
+ hidden_states = self.post_attention_layernorm(hidden_states)
824
+ hidden_states = self.mlp(hidden_states)
825
+ hidden_states = residual + hidden_states
826
+
827
+ outputs = (hidden_states,)
828
+
829
+ if output_attentions:
830
+ outputs += (self_attn_weights,)
831
+
832
+ if use_cache:
833
+ outputs += (present_key_value,)
834
+
835
+ return outputs
836
+
837
+
838
+ MISTRAL_START_DOCSTRING = r"""
839
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
840
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
841
+ etc.)
842
+
843
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
844
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
845
+ and behavior.
846
+
847
+ Parameters:
848
+ config ([`MixtralConfig`]):
849
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
850
+ load the weights associated with the model, only the configuration. Check out the
851
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
852
+ """
853
+
854
+
855
+ @add_start_docstrings(
856
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
857
+ MISTRAL_START_DOCSTRING,
858
+ )
859
+ class MixtralPreTrainedModel(PreTrainedModel):
860
+ config_class = MixtralConfig
861
+ base_model_prefix = "model"
862
+ supports_gradient_checkpointing = True
863
+ _no_split_modules = ["MixtralDecoderLayer"]
864
+ _skip_keys_device_placement = "past_key_values"
865
+ _supports_flash_attn_2 = True
866
+ _supports_cache_class = True
867
+
868
+ def _init_weights(self, module):
869
+ std = self.config.initializer_range
870
+ if isinstance(module, nn.Linear):
871
+ module.weight.data.normal_(mean=0.0, std=std)
872
+ if module.bias is not None:
873
+ module.bias.data.zero_()
874
+ elif isinstance(module, nn.Embedding):
875
+ module.weight.data.normal_(mean=0.0, std=std)
876
+ if module.padding_idx is not None:
877
+ module.weight.data[module.padding_idx].zero_()
878
+
879
+
880
+ MISTRAL_INPUTS_DOCSTRING = r"""
881
+ Args:
882
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
883
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
884
+ it.
885
+
886
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
887
+ [`PreTrainedTokenizer.__call__`] for details.
888
+
889
+ [What are input IDs?](../glossary#input-ids)
890
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
891
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
892
+
893
+ - 1 for tokens that are **not masked**,
894
+ - 0 for tokens that are **masked**.
895
+
896
+ [What are attention masks?](../glossary#attention-mask)
897
+
898
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
899
+ [`PreTrainedTokenizer.__call__`] for details.
900
+
901
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
902
+ `past_key_values`).
903
+
904
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
905
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
906
+ information on the default strategy.
907
+
908
+ - 1 indicates the head is **not masked**,
909
+ - 0 indicates the head is **masked**.
910
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
911
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
912
+ config.n_positions - 1]`.
913
+
914
+ [What are position IDs?](../glossary#position-ids)
915
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
916
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
917
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
918
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
919
+
920
+ Two formats are allowed:
921
+ - a [`~cache_utils.Cache`] instance;
922
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
923
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
924
+ cache format.
925
+
926
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
927
+ legacy cache format will be returned.
928
+
929
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
930
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
931
+ of shape `(batch_size, sequence_length)`.
932
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
933
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
934
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
935
+ model's internal embedding lookup matrix.
936
+ use_cache (`bool`, *optional*):
937
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
938
+ `past_key_values`).
939
+ output_attentions (`bool`, *optional*):
940
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
941
+ tensors for more detail.
942
+ output_hidden_states (`bool`, *optional*):
943
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
944
+ more detail.
945
+ return_dict (`bool`, *optional*):
946
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
947
+ """
948
+
949
+
950
+ @add_start_docstrings(
951
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
952
+ MISTRAL_START_DOCSTRING,
953
+ )
954
+ class MistralModel(MixtralPreTrainedModel):
955
+ """
956
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
957
+
958
+ Args:
959
+ config: MixtralConfig
960
+ """
961
+
962
+ def __init__(self, config: MixtralConfig):
963
+ super().__init__(config)
964
+ self.padding_idx = config.pad_token_id
965
+ self.vocab_size = config.vocab_size
966
+
967
+ self.embed_tokens = nn.Embedding(
968
+ config.vocab_size, config.hidden_size, self.padding_idx
969
+ )
970
+ self.layers = nn.ModuleList(
971
+ [
972
+ MixtralDecoderLayer(config, layer_idx)
973
+ for layer_idx in range(config.num_hidden_layers)
974
+ ]
975
+ )
976
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
977
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
978
+
979
+ self.gradient_checkpointing = False
980
+ # Initialize weights and apply final processing
981
+ self.post_init()
982
+
983
+ def get_input_embeddings(self):
984
+ return self.embed_tokens
985
+
986
+ def set_input_embeddings(self, value):
987
+ self.embed_tokens = value
988
+
989
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
990
+ def forward(
991
+ self,
992
+ input_ids: torch.LongTensor = None,
993
+ attention_mask: Optional[torch.Tensor] = None,
994
+ position_ids: Optional[torch.LongTensor] = None,
995
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
996
+ inputs_embeds: Optional[torch.FloatTensor] = None,
997
+ use_cache: Optional[bool] = None,
998
+ output_attentions: Optional[bool] = None,
999
+ output_hidden_states: Optional[bool] = None,
1000
+ return_dict: Optional[bool] = None,
1001
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1002
+ output_attentions = (
1003
+ output_attentions
1004
+ if output_attentions is not None
1005
+ else self.config.output_attentions
1006
+ )
1007
+ output_hidden_states = (
1008
+ output_hidden_states
1009
+ if output_hidden_states is not None
1010
+ else self.config.output_hidden_states
1011
+ )
1012
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1013
+
1014
+ return_dict = (
1015
+ return_dict if return_dict is not None else self.config.use_return_dict
1016
+ )
1017
+
1018
+ # retrieve input_ids and inputs_embeds
1019
+ if input_ids is not None and inputs_embeds is not None:
1020
+ raise ValueError(
1021
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
1022
+ )
1023
+ elif input_ids is not None:
1024
+ batch_size, seq_length = input_ids.shape
1025
+ elif inputs_embeds is not None:
1026
+ batch_size, seq_length, _ = inputs_embeds.shape
1027
+ else:
1028
+ raise ValueError(
1029
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
1030
+ )
1031
+
1032
+ seq_length_with_past = seq_length
1033
+ past_key_values_length = 0
1034
+
1035
+ if use_cache:
1036
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1037
+ if use_legacy_cache:
1038
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1039
+ past_key_values_length = past_key_values.get_seq_length()
1040
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1041
+
1042
+ cu_seqlens = None
1043
+ max_seqlen = None
1044
+ if position_ids is None:
1045
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1046
+ position_ids = torch.arange(
1047
+ past_key_values_length,
1048
+ seq_length + past_key_values_length,
1049
+ dtype=torch.long,
1050
+ device=device,
1051
+ )
1052
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1053
+ else:
1054
+ position_ids = position_ids.view(-1, seq_length).long()
1055
+ cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
1056
+ cu_seqlens = cu_seqlens.squeeze()
1057
+
1058
+ if inputs_embeds is None:
1059
+ inputs_embeds = self.embed_tokens(input_ids)
1060
+
1061
+ if (
1062
+ attention_mask is not None
1063
+ and hasattr(self.config, "_flash_attn_2_enabled")
1064
+ and self.config._flash_attn_2_enabled
1065
+ and use_cache
1066
+ ):
1067
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1068
+ if is_padding_right:
1069
+ raise ValueError(
1070
+ "You are attempting to perform batched generation with padding_side='right'"
1071
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
1072
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1073
+ )
1074
+
1075
+ if getattr(self.config, "_flash_attn_2_enabled", False):
1076
+ # 2d mask is passed through the layers
1077
+ attention_mask = (
1078
+ attention_mask
1079
+ if (attention_mask is not None and 0 in attention_mask)
1080
+ else None
1081
+ )
1082
+ else:
1083
+ # 4d mask is passed through the layers
1084
+ attention_mask = _prepare_4d_causal_attention_mask(
1085
+ attention_mask,
1086
+ (batch_size, seq_length),
1087
+ inputs_embeds,
1088
+ past_key_values_length,
1089
+ )
1090
+
1091
+ hidden_states = inputs_embeds
1092
+
1093
+ if self.gradient_checkpointing and self.training:
1094
+ if use_cache:
1095
+ logger.warning_once(
1096
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1097
+ )
1098
+ use_cache = False
1099
+
1100
+ # decoder layers
1101
+ all_hidden_states = () if output_hidden_states else None
1102
+ all_self_attns = () if output_attentions else None
1103
+ next_decoder_cache = None
1104
+
1105
+ for decoder_layer in self.layers:
1106
+ if output_hidden_states:
1107
+ all_hidden_states += (hidden_states,)
1108
+
1109
+ if self.gradient_checkpointing and self.training:
1110
+ layer_outputs = self._gradient_checkpointing_func(
1111
+ decoder_layer.__call__,
1112
+ hidden_states,
1113
+ attention_mask,
1114
+ position_ids,
1115
+ past_key_values,
1116
+ output_attentions,
1117
+ use_cache,
1118
+ cu_seqlens,
1119
+ max_seqlen,
1120
+ )
1121
+ else:
1122
+ layer_outputs = decoder_layer(
1123
+ hidden_states,
1124
+ attention_mask=attention_mask,
1125
+ position_ids=position_ids,
1126
+ past_key_value=past_key_values,
1127
+ output_attentions=output_attentions,
1128
+ use_cache=use_cache,
1129
+ cu_seqlens=cu_seqlens,
1130
+ max_seqlen=max_seqlen,
1131
+ )
1132
+
1133
+ hidden_states = layer_outputs[0]
1134
+
1135
+ if use_cache:
1136
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1137
+
1138
+ if output_attentions:
1139
+ all_self_attns += (layer_outputs[1],)
1140
+
1141
+ hidden_states = self.norm(hidden_states)
1142
+
1143
+ # add hidden states from the last decoder layer
1144
+ if output_hidden_states:
1145
+ all_hidden_states += (hidden_states,)
1146
+
1147
+ next_cache = None
1148
+ if use_cache:
1149
+ next_cache = (
1150
+ next_decoder_cache.to_legacy_cache()
1151
+ if use_legacy_cache
1152
+ else next_decoder_cache
1153
+ )
1154
+
1155
+ if not return_dict:
1156
+ return tuple(
1157
+ v
1158
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1159
+ if v is not None
1160
+ )
1161
+ return BaseModelOutputWithPast(
1162
+ last_hidden_state=hidden_states,
1163
+ past_key_values=next_cache,
1164
+ hidden_states=all_hidden_states,
1165
+ attentions=all_self_attns,
1166
+ )
1167
+
1168
+
1169
+ class MixtralForCausalLM(MixtralPreTrainedModel):
1170
+ _tied_weights_keys = ["lm_head.weight"]
1171
+
1172
+ def __init__(self, config):
1173
+ super().__init__(config)
1174
+ self.model = MistralModel(config)
1175
+ self.vocab_size = config.vocab_size
1176
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1177
+
1178
+ # Initialize weights and apply final processing
1179
+ self.post_init()
1180
+
1181
+ def get_input_embeddings(self):
1182
+ return self.model.embed_tokens
1183
+
1184
+ def set_input_embeddings(self, value):
1185
+ self.model.embed_tokens = value
1186
+
1187
+ def get_output_embeddings(self):
1188
+ return self.lm_head
1189
+
1190
+ def set_output_embeddings(self, new_embeddings):
1191
+ self.lm_head = new_embeddings
1192
+
1193
+ def set_decoder(self, decoder):
1194
+ self.model = decoder
1195
+
1196
+ def get_decoder(self):
1197
+ return self.model
1198
+
1199
+ def _init_weights(self, module):
1200
+ return
1201
+
1202
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1203
+ @replace_return_docstrings(
1204
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1205
+ )
1206
+ def forward(
1207
+ self,
1208
+ input_ids: torch.LongTensor = None,
1209
+ attention_mask: Optional[torch.Tensor] = None,
1210
+ position_ids: Optional[torch.LongTensor] = None,
1211
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1212
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1213
+ labels: Optional[torch.LongTensor] = None,
1214
+ use_cache: Optional[bool] = None,
1215
+ output_attentions: Optional[bool] = None,
1216
+ output_hidden_states: Optional[bool] = None,
1217
+ return_dict: Optional[bool] = None,
1218
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1219
+ r"""
1220
+ Args:
1221
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1222
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1223
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1224
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1225
+
1226
+ Returns:
1227
+
1228
+ Example:
1229
+
1230
+ ```python
1231
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
1232
+
1233
+ >>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1234
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1235
+
1236
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1237
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1238
+
1239
+ >>> # Generate
1240
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1241
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1242
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1243
+ ```"""
1244
+
1245
+ output_attentions = (
1246
+ output_attentions
1247
+ if output_attentions is not None
1248
+ else self.config.output_attentions
1249
+ )
1250
+ output_hidden_states = (
1251
+ output_hidden_states
1252
+ if output_hidden_states is not None
1253
+ else self.config.output_hidden_states
1254
+ )
1255
+ return_dict = (
1256
+ return_dict if return_dict is not None else self.config.use_return_dict
1257
+ )
1258
+
1259
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1260
+ outputs = self.model(
1261
+ input_ids=input_ids,
1262
+ attention_mask=attention_mask,
1263
+ position_ids=position_ids,
1264
+ past_key_values=past_key_values,
1265
+ inputs_embeds=inputs_embeds,
1266
+ use_cache=use_cache,
1267
+ output_attentions=output_attentions,
1268
+ output_hidden_states=output_hidden_states,
1269
+ return_dict=return_dict,
1270
+ )
1271
+
1272
+ hidden_states = outputs[0]
1273
+ logits = self.lm_head(hidden_states)
1274
+ logits = logits.float()
1275
+
1276
+ loss = None
1277
+ if labels is not None:
1278
+ # Shift so that tokens < n predict n
1279
+ shift_logits = logits[..., :-1, :].contiguous()
1280
+ shift_labels = labels[..., 1:].contiguous()
1281
+ # Flatten the tokens
1282
+ loss_fct = CrossEntropyLoss()
1283
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1284
+ shift_labels = shift_labels.view(-1)
1285
+ # Enable model parallelism
1286
+ shift_labels = shift_labels.to(shift_logits.device)
1287
+ loss = loss_fct(shift_logits, shift_labels)
1288
+
1289
+ if not return_dict:
1290
+ output = (logits,) + outputs[1:]
1291
+ return (loss,) + output if loss is not None else output
1292
+
1293
+ return CausalLMOutputWithPast(
1294
+ loss=loss,
1295
+ logits=logits,
1296
+ past_key_values=outputs.past_key_values,
1297
+ hidden_states=outputs.hidden_states,
1298
+ attentions=outputs.attentions,
1299
+ )
1300
+
1301
+ def prepare_inputs_for_generation(
1302
+ self,
1303
+ input_ids,
1304
+ past_key_values=None,
1305
+ attention_mask=None,
1306
+ inputs_embeds=None,
1307
+ **kwargs,
1308
+ ):
1309
+ # Omit tokens covered by past_key_values
1310
+ if past_key_values is not None:
1311
+ if isinstance(past_key_values, Cache):
1312
+ cache_length = past_key_values.get_seq_length()
1313
+ past_length = past_key_values.seen_tokens
1314
+ else:
1315
+ cache_length = past_length = past_key_values[0][0].shape[2]
1316
+
1317
+ # Keep only the unprocessed tokens:
1318
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1319
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1320
+ # input)
1321
+ if (
1322
+ attention_mask is not None
1323
+ and attention_mask.shape[1] > input_ids.shape[1]
1324
+ ):
1325
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1326
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1327
+ # input_ids based on the past_length.
1328
+ elif past_length < input_ids.shape[1]:
1329
+ input_ids = input_ids[:, past_length:]
1330
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1331
+
1332
+ # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
1333
+ # older attention values, as their corresponding values are not part of the input.
1334
+ if cache_length < past_length and attention_mask is not None:
1335
+ attention_mask = attention_mask[
1336
+ :, -(cache_length + input_ids.shape[1]) :
1337
+ ]
1338
+
1339
+ position_ids = kwargs.get("position_ids", None)
1340
+ if attention_mask is not None and position_ids is None:
1341
+ # create position_ids on the fly for batch generation
1342
+ position_ids = attention_mask.long().cumsum(-1) - 1
1343
+ position_ids.masked_fill_(attention_mask == 0, 1)
1344
+ if past_key_values:
1345
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1346
+
1347
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1348
+ if inputs_embeds is not None and past_key_values is None:
1349
+ model_inputs = {"inputs_embeds": inputs_embeds}
1350
+ else:
1351
+ model_inputs = {"input_ids": input_ids}
1352
+
1353
+ model_inputs.update(
1354
+ {
1355
+ "position_ids": position_ids,
1356
+ "past_key_values": past_key_values,
1357
+ "use_cache": kwargs.get("use_cache"),
1358
+ "attention_mask": attention_mask,
1359
+ }
1360
+ )
1361
+ return model_inputs
1362
+
1363
+ @staticmethod
1364
+ def _reorder_cache(past_key_values, beam_idx):
1365
+ reordered_past = ()
1366
+ for layer_past in past_key_values:
1367
+ reordered_past += (
1368
+ tuple(
1369
+ past_state.index_select(0, beam_idx.to(past_state.device))
1370
+ for past_state in layer_past
1371
+ ),
1372
+ )
1373
+ return reordered_past
1374
+
1375
+
1376
+ @add_start_docstrings(
1377
+ """
1378
+ The Mistral Model transformer with a sequence classification head on top (linear layer).
1379
+
1380
+ [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1381
+ (e.g. GPT-2) do.
1382
+
1383
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1384
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1385
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1386
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1387
+ each row of the batch).
1388
+ """,
1389
+ MISTRAL_START_DOCSTRING,
1390
+ )
1391
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
1392
+ class MistralForSequenceClassification(MixtralPreTrainedModel):
1393
+ def __init__(self, config):
1394
+ super().__init__(config)
1395
+ self.num_labels = config.num_labels
1396
+ self.model = MistralModel(config)
1397
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1398
+
1399
+ # Initialize weights and apply final processing
1400
+ self.post_init()
1401
+
1402
+ def get_input_embeddings(self):
1403
+ return self.model.embed_tokens
1404
+
1405
+ def set_input_embeddings(self, value):
1406
+ self.model.embed_tokens = value
1407
+
1408
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1409
+ def forward(
1410
+ self,
1411
+ input_ids: torch.LongTensor = None,
1412
+ attention_mask: Optional[torch.Tensor] = None,
1413
+ position_ids: Optional[torch.LongTensor] = None,
1414
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1415
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1416
+ labels: Optional[torch.LongTensor] = None,
1417
+ use_cache: Optional[bool] = None,
1418
+ output_attentions: Optional[bool] = None,
1419
+ output_hidden_states: Optional[bool] = None,
1420
+ return_dict: Optional[bool] = None,
1421
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1422
+ r"""
1423
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1424
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1425
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1426
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1427
+ """
1428
+ return_dict = (
1429
+ return_dict if return_dict is not None else self.config.use_return_dict
1430
+ )
1431
+
1432
+ transformer_outputs = self.model(
1433
+ input_ids,
1434
+ attention_mask=attention_mask,
1435
+ position_ids=position_ids,
1436
+ past_key_values=past_key_values,
1437
+ inputs_embeds=inputs_embeds,
1438
+ use_cache=use_cache,
1439
+ output_attentions=output_attentions,
1440
+ output_hidden_states=output_hidden_states,
1441
+ return_dict=return_dict,
1442
+ )
1443
+ hidden_states = transformer_outputs[0]
1444
+ logits = self.score(hidden_states)
1445
+
1446
+ if input_ids is not None:
1447
+ batch_size = input_ids.shape[0]
1448
+ else:
1449
+ batch_size = inputs_embeds.shape[0]
1450
+
1451
+ if self.config.pad_token_id is None and batch_size != 1:
1452
+ raise ValueError(
1453
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1454
+ )
1455
+ if self.config.pad_token_id is None:
1456
+ sequence_lengths = -1
1457
+ else:
1458
+ if input_ids is not None:
1459
+ sequence_lengths = (
1460
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1461
+ ).to(logits.device)
1462
+ else:
1463
+ sequence_lengths = -1
1464
+
1465
+ pooled_logits = logits[
1466
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1467
+ ]
1468
+
1469
+ loss = None
1470
+ if labels is not None:
1471
+ labels = labels.to(logits.device)
1472
+ if self.config.problem_type is None:
1473
+ if self.num_labels == 1:
1474
+ self.config.problem_type = "regression"
1475
+ elif self.num_labels > 1 and (
1476
+ labels.dtype == torch.long or labels.dtype == torch.int
1477
+ ):
1478
+ self.config.problem_type = "single_label_classification"
1479
+ else:
1480
+ self.config.problem_type = "multi_label_classification"
1481
+
1482
+ if self.config.problem_type == "regression":
1483
+ loss_fct = MSELoss()
1484
+ if self.num_labels == 1:
1485
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1486
+ else:
1487
+ loss = loss_fct(pooled_logits, labels)
1488
+ elif self.config.problem_type == "single_label_classification":
1489
+ loss_fct = CrossEntropyLoss()
1490
+ loss = loss_fct(
1491
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1492
+ )
1493
+ elif self.config.problem_type == "multi_label_classification":
1494
+ loss_fct = BCEWithLogitsLoss()
1495
+ loss = loss_fct(pooled_logits, labels)
1496
+ if not return_dict:
1497
+ output = (pooled_logits,) + transformer_outputs[1:]
1498
+ return ((loss,) + output) if loss is not None else output
1499
+
1500
+ return SequenceClassifierOutputWithPast(
1501
+ loss=loss,
1502
+ logits=pooled_logits,
1503
+ past_key_values=transformer_outputs.past_key_values,
1504
+ hidden_states=transformer_outputs.hidden_states,
1505
+ attentions=transformer_outputs.attentions,
1506
+ )
src/axolotl/utils/models.py CHANGED
@@ -54,18 +54,25 @@ def check_model_config(cfg: DictDefault, model_config: AutoConfig):
54
  def load_model_config(cfg):
55
  model_config_name = cfg.base_model_config or cfg.base_model
56
  trust_remote_code = cfg.trust_remote_code is True
57
- try:
58
- model_config = AutoConfig.from_pretrained(
59
- model_config_name, trust_remote_code=trust_remote_code
60
- )
61
- except ValueError as err:
62
- if "mamba" in model_config_name:
63
- return addict.Dict(
64
- {
65
- "model_type": "mamba",
66
- }
67
  )
68
- raise err
 
 
 
 
 
 
 
69
 
70
  if cfg.model_config:
71
  for key, val in cfg.model_config.items():
@@ -301,7 +308,9 @@ def load_model(
301
  or cfg.is_falcon_derived_model
302
  or cfg.is_mistral_derived_model
303
  ):
304
- model_kwargs["use_flash_attention_2"] = True
 
 
305
 
306
  try:
307
  if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
@@ -363,6 +372,15 @@ def load_model(
363
  load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
364
  **model_kwargs,
365
  )
 
 
 
 
 
 
 
 
 
366
  elif model_type == "MambaLMHeadModel":
367
  # FIXME this is janky at best and hacked together to make it work
368
  MambaLMHeadModel = fix_mamba_attn_for_loss() # pylint: disable=invalid-name
 
54
  def load_model_config(cfg):
55
  model_config_name = cfg.base_model_config or cfg.base_model
56
  trust_remote_code = cfg.trust_remote_code is True
57
+ model_type = cfg.model_type
58
+
59
+ if model_type == "MixtralForCausalLM":
60
+ from axolotl.models.mixtral.configuration_moe_mistral import MixtralConfig
61
+
62
+ model_config = MixtralConfig.from_pretrained(model_config_name)
63
+ else:
64
+ try:
65
+ model_config = AutoConfig.from_pretrained(
66
+ model_config_name, trust_remote_code=trust_remote_code
67
  )
68
+ except ValueError as err:
69
+ if "mamba" in model_config_name:
70
+ return addict.Dict(
71
+ {
72
+ "model_type": "mamba",
73
+ }
74
+ )
75
+ raise err
76
 
77
  if cfg.model_config:
78
  for key, val in cfg.model_config.items():
 
308
  or cfg.is_falcon_derived_model
309
  or cfg.is_mistral_derived_model
310
  ):
311
+ # TODO enable once properly supported in transformers
312
+ # model_kwargs["attn_implementation"] = "flash_attention_2"
313
+ model_kwargs["use_flash_attention_2"] = True # legacy, to be deprecated
314
 
315
  try:
316
  if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
 
372
  load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
373
  **model_kwargs,
374
  )
375
+ elif model_type == "MixtralForCausalLM":
376
+ from axolotl.models.mixtral import MixtralForCausalLM
377
+
378
+ model = MixtralForCausalLM.from_pretrained(
379
+ base_model,
380
+ load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
381
+ load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
382
+ **model_kwargs,
383
+ )
384
  elif model_type == "MambaLMHeadModel":
385
  # FIXME this is janky at best and hacked together to make it work
386
  MambaLMHeadModel = fix_mamba_attn_for_loss() # pylint: disable=invalid-name