Peft lotfq (#1222)
Browse files* loftq support for lora
* fix loftq check
* update readme for loftq
* readability cleanup
* use peft main for loftq fixes, remove unnecessary special tokens
* remove unused test from older deprecation
- README.md +6 -0
- examples/llama-2/fft_optimized.yml +0 -3
- examples/llama-2/loftq.yml +70 -0
- examples/llama-2/lora.yml +0 -3
- examples/llama-2/qlora.yml +0 -3
- requirements.txt +1 -1
- src/axolotl/utils/config.py +2 -4
- src/axolotl/utils/models.py +18 -6
- tests/test_validation.py +0 -10
README.md
CHANGED
@@ -696,6 +696,12 @@ lora_modules_to_save:
|
|
696 |
|
697 |
lora_fan_in_fan_out: false
|
698 |
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
# ReLoRA configuration
|
700 |
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
701 |
relora_steps: # Number of steps per ReLoRA restart
|
|
|
696 |
|
697 |
lora_fan_in_fan_out: false
|
698 |
|
699 |
+
peft:
|
700 |
+
# Configuration options for loftq initialization for LoRA
|
701 |
+
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
702 |
+
loftq_config:
|
703 |
+
loftq_bits: # typically 4 bits
|
704 |
+
|
705 |
# ReLoRA configuration
|
706 |
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
707 |
relora_steps: # Number of steps per ReLoRA restart
|
examples/llama-2/fft_optimized.yml
CHANGED
@@ -67,6 +67,3 @@ weight_decay: 0.1
|
|
67 |
fsdp:
|
68 |
fsdp_config:
|
69 |
special_tokens:
|
70 |
-
bos_token: "<s>"
|
71 |
-
eos_token: "</s>"
|
72 |
-
unk_token: "<unk>"
|
|
|
67 |
fsdp:
|
68 |
fsdp_config:
|
69 |
special_tokens:
|
|
|
|
|
|
examples/llama-2/loftq.yml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: NousResearch/Llama-2-7b-hf
|
2 |
+
model_type: LlamaForCausalLM
|
3 |
+
tokenizer_type: LlamaTokenizer
|
4 |
+
is_llama_derived_model: true
|
5 |
+
|
6 |
+
load_in_8bit: false
|
7 |
+
load_in_4bit: false
|
8 |
+
strict: false
|
9 |
+
|
10 |
+
datasets:
|
11 |
+
- path: mhenrichsen/alpaca_2k_test
|
12 |
+
type: alpaca
|
13 |
+
dataset_prepared_path:
|
14 |
+
val_set_size: 0.05
|
15 |
+
output_dir: ./lora-out
|
16 |
+
|
17 |
+
sequence_len: 4096
|
18 |
+
sample_packing: true
|
19 |
+
pad_to_sequence_len: true
|
20 |
+
|
21 |
+
adapter: lora
|
22 |
+
lora_model_dir:
|
23 |
+
lora_r: 32
|
24 |
+
lora_alpha: 16
|
25 |
+
lora_dropout: 0.05
|
26 |
+
lora_target_linear: true
|
27 |
+
lora_fan_in_fan_out:
|
28 |
+
peft:
|
29 |
+
loftq_config:
|
30 |
+
loftq_bits: 4
|
31 |
+
|
32 |
+
wandb_project:
|
33 |
+
wandb_entity:
|
34 |
+
wandb_watch:
|
35 |
+
wandb_name:
|
36 |
+
wandb_log_model:
|
37 |
+
|
38 |
+
gradient_accumulation_steps: 4
|
39 |
+
micro_batch_size: 2
|
40 |
+
num_epochs: 4
|
41 |
+
optimizer: adamw_bnb_8bit
|
42 |
+
lr_scheduler: cosine
|
43 |
+
learning_rate: 0.0002
|
44 |
+
|
45 |
+
train_on_inputs: false
|
46 |
+
group_by_length: false
|
47 |
+
bf16: auto
|
48 |
+
fp16:
|
49 |
+
tf32: false
|
50 |
+
|
51 |
+
gradient_checkpointing: true
|
52 |
+
early_stopping_patience:
|
53 |
+
resume_from_checkpoint:
|
54 |
+
local_rank:
|
55 |
+
logging_steps: 1
|
56 |
+
xformers_attention:
|
57 |
+
flash_attention: true
|
58 |
+
s2_attention:
|
59 |
+
|
60 |
+
warmup_steps: 10
|
61 |
+
evals_per_epoch: 4
|
62 |
+
eval_table_size:
|
63 |
+
eval_table_max_new_tokens: 128
|
64 |
+
saves_per_epoch: 1
|
65 |
+
debug:
|
66 |
+
deepspeed:
|
67 |
+
weight_decay: 0.0
|
68 |
+
fsdp:
|
69 |
+
fsdp_config:
|
70 |
+
special_tokens:
|
examples/llama-2/lora.yml
CHANGED
@@ -65,6 +65,3 @@ weight_decay: 0.0
|
|
65 |
fsdp:
|
66 |
fsdp_config:
|
67 |
special_tokens:
|
68 |
-
bos_token: "<s>"
|
69 |
-
eos_token: "</s>"
|
70 |
-
unk_token: "<unk>"
|
|
|
65 |
fsdp:
|
66 |
fsdp_config:
|
67 |
special_tokens:
|
|
|
|
|
|
examples/llama-2/qlora.yml
CHANGED
@@ -65,6 +65,3 @@ weight_decay: 0.0
|
|
65 |
fsdp:
|
66 |
fsdp_config:
|
67 |
special_tokens:
|
68 |
-
bos_token: "<s>"
|
69 |
-
eos_token: "</s>"
|
70 |
-
unk_token: "<unk>"
|
|
|
65 |
fsdp:
|
66 |
fsdp_config:
|
67 |
special_tokens:
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
--extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
|
2 |
packaging==23.2
|
3 |
-
peft
|
4 |
transformers==4.37.0
|
5 |
tokenizers==0.15.0
|
6 |
bitsandbytes>=0.41.1
|
|
|
1 |
--extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
|
2 |
packaging==23.2
|
3 |
+
peft @ git+https://github.com/huggingface/peft.git
|
4 |
transformers==4.37.0
|
5 |
tokenizers==0.15.0
|
6 |
bitsandbytes>=0.41.1
|
src/axolotl/utils/config.py
CHANGED
@@ -232,9 +232,6 @@ def validate_config(cfg):
|
|
232 |
"eval_batch_size != micro_batch_size. This can lead to VRAM instability."
|
233 |
)
|
234 |
|
235 |
-
if cfg.load_4bit:
|
236 |
-
raise ValueError("cfg.load_4bit parameter has been deprecated")
|
237 |
-
|
238 |
if cfg.adapter == "qlora":
|
239 |
if cfg.merge_lora:
|
240 |
# can't merge qlora if loaded in 8bit or 4bit
|
@@ -260,7 +257,8 @@ def validate_config(cfg):
|
|
260 |
if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
|
261 |
raise ValueError("Fused modules are not supported with QLoRA")
|
262 |
|
263 |
-
|
|
|
264 |
LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
|
265 |
|
266 |
if cfg.adapter == "lora" and (cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp):
|
|
|
232 |
"eval_batch_size != micro_batch_size. This can lead to VRAM instability."
|
233 |
)
|
234 |
|
|
|
|
|
|
|
235 |
if cfg.adapter == "qlora":
|
236 |
if cfg.merge_lora:
|
237 |
# can't merge qlora if loaded in 8bit or 4bit
|
|
|
257 |
if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
|
258 |
raise ValueError("Fused modules are not supported with QLoRA")
|
259 |
|
260 |
+
loftq = cfg.peft and cfg.peft.loftq_config and cfg.peft.loftq_config.loftq_bits
|
261 |
+
if not cfg.load_in_8bit and cfg.adapter == "lora" and not loftq:
|
262 |
LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
|
263 |
|
264 |
if cfg.adapter == "lora" and (cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp):
|
src/axolotl/utils/models.py
CHANGED
@@ -9,7 +9,7 @@ import bitsandbytes as bnb
|
|
9 |
import torch
|
10 |
import transformers
|
11 |
from optimum.bettertransformer import BetterTransformer
|
12 |
-
from peft import PeftConfig, prepare_model_for_kbit_training
|
13 |
from peft.tuners.lora import QuantLinear
|
14 |
from transformers import ( # noqa: F401
|
15 |
AddedToken,
|
@@ -667,13 +667,17 @@ def load_model(
|
|
667 |
# Qwen doesn't play nicely with LoRA if this is enabled
|
668 |
skip_prepare_model_for_kbit_training = True
|
669 |
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
|
|
674 |
if cfg.gradient_checkpointing:
|
675 |
model.gradient_checkpointing_enable()
|
676 |
-
if
|
|
|
|
|
|
|
677 |
model = prepare_model_for_kbit_training(
|
678 |
model, use_gradient_checkpointing=cfg.gradient_checkpointing
|
679 |
)
|
@@ -700,6 +704,7 @@ def load_model(
|
|
700 |
model, lora_config = load_adapter(model, cfg, cfg.adapter)
|
701 |
|
702 |
if cfg.ddp and not load_in_8bit and not (cfg.rl and cfg.load_in_4bit):
|
|
|
703 |
model.to(f"cuda:{cfg.local_rank}")
|
704 |
|
705 |
if torch.cuda.device_count() > 1 and int(os.getenv("WORLD_SIZE", "1")) == 1:
|
@@ -797,6 +802,12 @@ def load_lora(model, cfg, inference=False, config_only=False):
|
|
797 |
LOG.info(f"found linear modules: {repr(linear_names)}")
|
798 |
lora_target_modules = list(set(lora_target_modules + linear_names))
|
799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
800 |
lora_config = LoraConfig(
|
801 |
r=cfg.lora_r,
|
802 |
lora_alpha=cfg.lora_alpha,
|
@@ -807,6 +818,7 @@ def load_lora(model, cfg, inference=False, config_only=False):
|
|
807 |
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
|
808 |
bias="none",
|
809 |
task_type="CAUSAL_LM",
|
|
|
810 |
)
|
811 |
|
812 |
if config_only:
|
|
|
9 |
import torch
|
10 |
import transformers
|
11 |
from optimum.bettertransformer import BetterTransformer
|
12 |
+
from peft import LoftQConfig, PeftConfig, prepare_model_for_kbit_training
|
13 |
from peft.tuners.lora import QuantLinear
|
14 |
from transformers import ( # noqa: F401
|
15 |
AddedToken,
|
|
|
667 |
# Qwen doesn't play nicely with LoRA if this is enabled
|
668 |
skip_prepare_model_for_kbit_training = True
|
669 |
|
670 |
+
loftq_bits = cfg.peft and cfg.peft.loftq_config and cfg.peft.loftq_config.loftq_bits
|
671 |
+
if cfg.adapter == "lora" and loftq_bits:
|
672 |
+
skip_prepare_model_for_kbit_training = True
|
673 |
+
|
674 |
+
if cfg.adapter in ["lora", "qlora"]:
|
675 |
if cfg.gradient_checkpointing:
|
676 |
model.gradient_checkpointing_enable()
|
677 |
+
if (
|
678 |
+
cfg.load_in_8bit or cfg.load_in_4bit
|
679 |
+
) and not skip_prepare_model_for_kbit_training:
|
680 |
+
LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
|
681 |
model = prepare_model_for_kbit_training(
|
682 |
model, use_gradient_checkpointing=cfg.gradient_checkpointing
|
683 |
)
|
|
|
704 |
model, lora_config = load_adapter(model, cfg, cfg.adapter)
|
705 |
|
706 |
if cfg.ddp and not load_in_8bit and not (cfg.rl and cfg.load_in_4bit):
|
707 |
+
# TODO revaldate this conditional
|
708 |
model.to(f"cuda:{cfg.local_rank}")
|
709 |
|
710 |
if torch.cuda.device_count() > 1 and int(os.getenv("WORLD_SIZE", "1")) == 1:
|
|
|
802 |
LOG.info(f"found linear modules: {repr(linear_names)}")
|
803 |
lora_target_modules = list(set(lora_target_modules + linear_names))
|
804 |
|
805 |
+
lora_config_kwargs = {}
|
806 |
+
loftq_bits = cfg.peft and cfg.peft.loftq_config and cfg.peft.loftq_config.loftq_bits
|
807 |
+
if loftq_bits:
|
808 |
+
lora_config_kwargs["loftq_config"] = LoftQConfig(loftq_bits=loftq_bits)
|
809 |
+
lora_config_kwargs["init_lora_weights"] = "loftq"
|
810 |
+
|
811 |
lora_config = LoraConfig(
|
812 |
r=cfg.lora_r,
|
813 |
lora_alpha=cfg.lora_alpha,
|
|
|
818 |
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
|
819 |
bias="none",
|
820 |
task_type="CAUSAL_LM",
|
821 |
+
**lora_config_kwargs,
|
822 |
)
|
823 |
|
824 |
if config_only:
|
tests/test_validation.py
CHANGED
@@ -32,16 +32,6 @@ class ValidationTest(BaseValidation):
|
|
32 |
Test the validation module
|
33 |
"""
|
34 |
|
35 |
-
def test_load_4bit_deprecate(self):
|
36 |
-
cfg = DictDefault(
|
37 |
-
{
|
38 |
-
"load_4bit": True,
|
39 |
-
}
|
40 |
-
)
|
41 |
-
|
42 |
-
with pytest.raises(ValueError):
|
43 |
-
validate_config(cfg)
|
44 |
-
|
45 |
def test_batch_size_unused_warning(self):
|
46 |
cfg = DictDefault(
|
47 |
{
|
|
|
32 |
Test the validation module
|
33 |
"""
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def test_batch_size_unused_warning(self):
|
36 |
cfg = DictDefault(
|
37 |
{
|