File size: 21,893 Bytes
ccb8edf
 
 
 
 
 
e9d5e9c
8ad24b7
2618588
 
8ad24b7
84cb849
 
8ad24b7
 
 
 
 
 
 
 
 
a5f7e3b
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488e992
a8ae89c
488e992
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35adb8
8ad24b7
 
 
 
 
 
488e992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce988dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35adb8
8ad24b7
b35adb8
8ad24b7
b35adb8
8ad24b7
b35adb8
8ad24b7
b35adb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35adb8
8ad24b7
b35adb8
8ad24b7
 
b35adb8
 
 
 
8ad24b7
 
 
b35adb8
 
 
8ad24b7
 
b35adb8
 
 
 
 
 
 
8ad24b7
 
 
 
 
 
b35adb8
 
 
 
 
 
 
 
8ad24b7
 
 
b35adb8
 
 
 
8ad24b7
 
 
 
 
 
b35adb8
8ad24b7
 
187e575
52d5b06
 
 
 
 
 
 
 
8ad24b7
 
 
 
 
52d5b06
c09985f
8ad24b7
 
 
 
a8ae89c
8ad24b7
e6d71ec
8ad24b7
e6d71ec
b35adb8
 
 
 
8ad24b7
 
 
b35adb8
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738ada4
 
 
 
 
 
 
 
 
8ad24b7
 
 
a717449
0646ad5
027365f
 
0646ad5
 
 
 
 
 
 
 
 
 
027365f
a5f7e3b
0646ad5
 
 
 
8ad24b7
 
84cb849
 
9efbb97
 
 
 
 
 
 
8ad24b7
 
 
 
 
9efbb97
84cb849
 
1078648
9efbb97
84cb849
 
 
 
 
 
8ad24b7
 
 
84cb849
 
1078648
8ad24b7
ce988dc
8ad24b7
 
1078648
8ad24b7
 
 
 
1078648
8ad24b7
84cb849
 
 
 
 
8ad24b7
 
 
84cb849
 
1078648
52d5b06
 
31095a2
 
 
 
7803d2d
1078648
8ad24b7
84cb849
9efbb97
84cb849
1078648
e0a87f8
1078648
 
 
9efbb97
 
84cb849
1078648
9efbb97
 
1754322
1078648
8ad24b7
 
 
fed8ef0
9efbb97
 
fed8ef0
9efbb97
a8ae89c
8ad24b7
 
9efbb97
 
 
 
 
fed8ef0
8ad24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import CohereEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter, TokenTextSplitter
from typing import List, Dict, Any
import pandas as pd
import numpy as np
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
import jellyfish
from gensim.models import Word2Vec
from gensim.models.fasttext import FastText
from collections import Counter
from tokenizers import Tokenizer, models, trainers
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE
from sklearn.metrics import silhouette_score
from scipy.stats import spearmanr
from functools import lru_cache

# NLTK Resource Download
def download_nltk_resources():
    resources = ['punkt', 'stopwords', 'snowball_data']
    for resource in resources:
        try:
            nltk.download(resource, quiet=True)
        except Exception as e:
            print(f"Failed to download {resource}: {str(e)}")

download_nltk_resources()

FILES_DIR = './files'

# Model Management
class ModelManager:
    def __init__(self):
        self.models = {
            'HuggingFace': {
                'e5-base-de': "danielheinz/e5-base-sts-en-de",
                'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
                'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
                'gte-large': "gte-large",
                'gbert-base': "gbert-base"
            },
            'OpenAI': {
                'text-embedding-ada-002': "text-embedding-ada-002"
            },
            'Cohere': {
                'embed-multilingual-v2.0': "embed-multilingual-v2.0"
            }
        }

    def add_model(self, provider, name, model_path):
        if provider not in self.models:
            self.models[provider] = {}
        self.models[provider][name] = model_path

    def remove_model(self, provider, name):
        if provider in self.models and name in self.models[provider]:
            del self.models[provider][name]

    def get_model(self, provider, name):
        return self.models.get(provider, {}).get(name)

    def list_models(self):
        return {provider: list(models.keys()) for provider, models in self.models.items()}

model_manager = ModelManager()

# File Handling
class FileHandler:
    @staticmethod
    def extract_text(file_path):
        ext = os.path.splitext(file_path)[-1].lower()
        if ext == '.pdf':
            return FileHandler._extract_from_pdf(file_path)
        elif ext == '.docx':
            return FileHandler._extract_from_docx(file_path)
        elif ext == '.txt':
            return FileHandler._extract_from_txt(file_path)
        else:
            raise ValueError(f"Unsupported file type: {ext}")

    @staticmethod
    def _extract_from_pdf(file_path):
        with pdfplumber.open(file_path) as pdf:
            return ' '.join([page.extract_text() for page in pdf.pages])

    @staticmethod
    def _extract_from_docx(file_path):
        doc = docx.Document(file_path)
        return ' '.join([para.text for para in doc.paragraphs])

    @staticmethod
    def _extract_from_txt(file_path):
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()

# Text Processing
def simple_tokenize(text):
    return text.split()

def preprocess_text(text, lang='german'):
    text = text.lower()
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    
    try:
        tokens = word_tokenize(text, language=lang)
    except LookupError:
        print(f"Warning: NLTK punkt tokenizer for {lang} not found. Using simple tokenization.")
        tokens = simple_tokenize(text)
    
    try:
        stop_words = set(stopwords.words(lang))
    except LookupError:
        print(f"Warning: Stopwords for {lang} not found. Skipping stopword removal.")
        stop_words = set()
    tokens = [token for token in tokens if token not in stop_words]
    
    try:
        stemmer = SnowballStemmer(lang)
        tokens = [stemmer.stem(token) for token in tokens]
    except ValueError:
        print(f"Warning: SnowballStemmer for {lang} not available. Skipping stemming.")
    
    return ' '.join(tokens)

def phonetic_match(text, query, method='levenshtein_distance'):
    if method == 'levenshtein_distance':
        text_phonetic = jellyfish.soundex(text)
        #query_phonetic = jellyfish.cologne_phonetic(query)
        query_phonetic = jellyfish.soundex(query)
        return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
    return 0

def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
    # Tokenize the texts
    tokenized_texts = [text.split() for text in texts]
    
    if model_type == 'word2vec':
        model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
    elif model_type == 'fasttext':
        model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
    else:
        raise ValueError("Unsupported model type")
    
    return model

class CustomEmbeddings(HuggingFaceEmbeddings):
    def __init__(self, model_path):
        self.model = Word2Vec.load(model_path)  # or FastText.load() for FastText models
    
    def embed_documents(self, texts):
        return [self.model.wv[text.split()] for text in texts]
    
    def embed_query(self, text):
        return self.model.wv[text.split()]


# Custom Tokenizer
def create_custom_tokenizer(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        text = f.read()

    tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
    tokenizer.pre_tokenizer = Whitespace()

    trainer = WordLevelTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
    tokenizer.train_from_iterator([text], trainer)

    return tokenizer

def custom_tokenize(text, tokenizer):
    return tokenizer.encode(text).tokens

# Embedding and Vector Store
@lru_cache(maxsize=None)
def get_embedding_model(model_type, model_name):
    model_path = model_manager.get_model(model_type, model_name)
    if model_type == 'HuggingFace':
        return HuggingFaceEmbeddings(model_name=model_path)
    elif model_type == 'OpenAI':
        return OpenAIEmbeddings(model=model_path)
    elif model_type == 'Cohere':
        return CohereEmbeddings(model=model_path)
    else:
        raise ValueError(f"Unsupported model type: {model_type}")

def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
    if split_strategy == 'token':
        return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    elif split_strategy == 'recursive':
        return RecursiveCharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=overlap_size,
            separators=custom_separators or ["\n\n", "\n", " ", ""]
        )
    else:
        raise ValueError(f"Unsupported split strategy: {split_strategy}")

def get_vector_store(vector_store_type, chunks, embedding_model):
    # Convert chunks to a tuple to make it hashable
    chunks_tuple = tuple(chunks)
    
    # Use a helper function for the actual vector store creation
    return _create_vector_store(vector_store_type, chunks_tuple, embedding_model)


def _create_vector_store(vector_store_type, chunks_tuple, embedding_model):
    # Convert the tuple back to a list for use with the vector store
    chunks = list(chunks_tuple)
    
    if vector_store_type == 'FAISS':
        return FAISS.from_texts(chunks, embedding_model)
    elif vector_store_type == 'Chroma':
        return Chroma.from_texts(chunks, embedding_model)
    else:
        raise ValueError(f"Unsupported vector store type: {vector_store_type}")

        
def get_retriever(vector_store, search_type, search_kwargs):
    if search_type == 'similarity':
        return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
    elif search_type == 'mmr':
        return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
    elif search_type == 'custom':
        # Implement custom retriever logic here
        pass
    else:
        raise ValueError(f"Unsupported search type: {search_type}")

# Main Processing Functions
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None):
    if file_path:
        text = FileHandler.extract_text(file_path)
    else:
        text = ""
        for file in os.listdir(FILES_DIR):
            file_path = os.path.join(FILES_DIR, file)
            text += FileHandler.extract_text(file_path)
    
    if custom_tokenizer_file:
        tokenizer = create_custom_tokenizer(custom_tokenizer_file)
        text = ' '.join(custom_tokenize(text, tokenizer))
    else:
        text = preprocess_text(text, lang)

    text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
    chunks = text_splitter.split_text(text)

    embedding_model = get_embedding_model(model_type, model_name)

    return chunks, embedding_model, len(text.split())

def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
    preprocessed_query = preprocess_text(query, lang)
    
    vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
    retriever = get_retriever(vector_store, search_type, {"k": top_k})

    start_time = time.time()
    results = retriever.invoke(preprocessed_query)

    def score_result(doc):
        similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1]
        phonetic_score = phonetic_match(doc.page_content, query)
        return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score

    results = sorted(results, key=score_result, reverse=True)
    end_time = time.time()

    # Check if embeddings are available
    embeddings = []
    for doc in results:
        if hasattr(doc, 'embedding'):
            embeddings.append(doc.embedding)  # Use the embedding if it exists
        else:
            embeddings.append(None)  # Append None if embedding doesn't exist

    # Create a DataFrame with the results and embeddings
    results_df = pd.DataFrame({
        'content': [doc.page_content for doc in results],
        'embedding': embeddings
    })

    return results_df, end_time - start_time, vector_store, results

# Evaluation Metrics
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k):
    stats = {
        "num_results": len(results),
 #       "avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0,
        "avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0,

        #"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if not results.empty else 0,
        "search_time": search_time,
        "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
        "num_documents": len(vector_store.docstore._dict),
        "num_tokens": num_tokens,
        "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A",
        "embedding_dimension": len(embedding_model.embed_query(query)),
        "top_k": top_k,
    }
    
    if len(results) > 1000:
        embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
        pairwise_similarities = np.inner(embeddings, embeddings)
        stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)])
        
        # Silhouette Score
        if len(embeddings) > 2:
            print('-----')
            #stats["silhouette_score"] = "N/A"
            stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings)))
        else:
            stats["silhouette_score"] = "N/A"
    else:
        stats["result_diversity"] = "N/A"
        stats["silhouette_score"] = "N/A"
    
    query_embedding = embedding_model.embed_query(query)
    result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
    similarities = [np.inner(query_embedding, emb) for emb in result_embeddings]
    rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
    stats["rank_correlation"] = rank_correlation
    
    return stats

# Visualization
def visualize_results(results_df, stats_df):
    fig, axs = plt.subplots(2, 2, figsize=(20, 20))
    
    sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0])
    axs[0, 0].set_title('Search Time by Model')
    axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')
    
    sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1])
    axs[0, 1].set_title('Result Diversity vs. Rank Correlation')
    
    sns.boxplot(x='model', y='avg_content_length', data=stats_df, ax=axs[1, 0])
    axs[1, 0].set_title('Distribution of Result Content Lengths')
    axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right')
    
    embeddings = np.array([embedding for embedding in results_df['embedding'] if isinstance(embedding, np.ndarray)])
    if len(embeddings) > 1:
        tsne = TSNE(n_components=2, random_state=42)
        embeddings_2d = tsne.fit_transform(embeddings)
        
        sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'][:len(embeddings)], ax=axs[1, 1])
        axs[1, 1].set_title('t-SNE Visualization of Result Embeddings')
    else:
        axs[1, 1].text(0.5, 0.5, "Not enough data for t-SNE visualization", ha='center', va='center')
    
    plt.tight_layout()
    return fig

def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
    tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))

    # Count word frequencies
    word_freq = Counter(word for text in texts for word in text.split())
    
    # Remove rare words
    optimized_texts = [
        ' '.join(word for word in text.split() if word_freq[word] >= min_frequency)
        for text in texts
    ]
    
    # Train BPE tokenizer
#    tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
    trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
    tokenizer.train_from_iterator(optimized_texts, trainer)
    
    return tokenizer, optimized_texts

# Main Comparison Function
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3, custom_tokenizer_file=None):
    all_results = []
    all_stats = []
    settings = {
        "split_strategy": split_strategy,
        "chunk_size": chunk_size,
        "overlap_size": overlap_size,
        "custom_separators": custom_separators,
        "vector_store_type": vector_store_type,
        "search_type": search_type,
        "top_k": top_k,
        "lang": lang,
        "use_custom_embedding": use_custom_embedding,
        "optimize_vocab": optimize_vocab,
        "phonetic_weight": phonetic_weight
    }

    for model_type, model_name in zip(model_types, model_names):
        # Process the file and generate chunks & embeddings
        chunks, embedding_model, num_tokens = process_files(
            file.name if file else None,
            model_type,
            model_name,
            split_strategy,
            chunk_size,
            overlap_size,
            custom_separators.split(',') if custom_separators else None,
            lang,
            custom_tokenizer_file
        )

        # Custom embedding handling
        if use_custom_embedding:
            custom_model = create_custom_embedding(chunks) #add custom model by name, must com from gradio FE
            embedding_model = CustomEmbeddings(custom_model)

        # Optimizing vocabulary if required
        if optimize_vocab:
            tokenizer, optimized_chunks = optimize_vocabulary(chunks)
            chunks = optimized_chunks

        # Searching embeddings
        results, search_time, vector_store, results_raw = search_embeddings(
            chunks,
            embedding_model,
            vector_store_type,
            search_type,
            query,
            top_k,
            lang,
            phonetic_weight
        )

        # Storing embeddings into the results for future use
        for doc in results_raw:
            print(doc)  # or print(dir(doc)) to see available attributes

        #embedding = doc.metadata.get('embedding', None)  # Use .get() to avoid KeyError

        result_embeddings = [doc.metadata.get('embedding', None) for doc in results_raw]  # Adjust this based on the actual attribute names
#        result_embeddings = [doc['embedding'] for doc in results_raw]  # Assuming each result has an embedding

        stats = calculate_statistics(results_raw, search_time, vector_store, num_tokens, embedding_model, query, top_k)
        stats["model"] = f"{model_type} - {model_name}"
        stats.update(settings)

        # Formatting results and attaching embeddings
        formatted_results = format_results(results_raw, stats)
        for i, result in enumerate(formatted_results):
            result['embedding'] = result_embeddings[i]  # Add the embedding to each result

        all_results.extend(formatted_results)
        all_stats.append(stats)

    # Create DataFrames with embeddings now included
    results_df = pd.DataFrame(all_results)
    stats_df = pd.DataFrame(all_stats)

    # Visualization of the results
    fig = visualize_results(results_df, stats_df)

    return results_df, stats_df, fig

def format_results(results, stats):
    formatted_results = []
    for doc in results:
        result = {
            "Model": stats["model"],
            "Content": doc.page_content,
            "Embedding": doc.embedding if hasattr(doc, 'embedding') else None,
            **doc.metadata,
            **{k: v for k, v in stats.items() if k not in ["model"]}
        }
        formatted_results.append(result)
    return formatted_results

# Gradio Interface
def launch_interface(share=True):
    iface = gr.Interface(
        fn=compare_embeddings,
        inputs=[
            gr.File(label="Upload File (Optional)"),
            gr.Textbox(label="Search Query"),
            gr.CheckboxGroup(choices=list(model_manager.list_models().keys()) + ["Custom"], label="Embedding Model Types"),
            gr.CheckboxGroup(choices=[model for models in model_manager.list_models().values() for model in models] + ["custom_model"], label="Embedding Models"),
            gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
            gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
            gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
            gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
            gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
            gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"),
            gr.Slider(1, 10, step=1, value=5, label="Top K"),
            gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"),
            gr.Checkbox(label="Use Custom Embedding", value=False),
            gr.Checkbox(label="Optimize Vocabulary", value=False),
            gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight"),
            gr.File(label="Custom Tokenizer File (Optional)")
        ],
        outputs=[
            gr.Dataframe(label="Results", interactive=False),
            gr.Dataframe(label="Statistics", interactive=False),
            gr.Plot(label="Visualizations")
        ],
        title="Advanced Embedding Comparison Tool",
        description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching"
    )

    tutorial_md = """
    # Advanced Embedding Comparison Tool Tutorial

    This tool allows you to compare different embedding models and retrieval strategies for document search and similarity matching.

    ## How to use:

    1. Upload a file (optional) or use the default files in the system.
    2. Enter a search query.
    3. Select one or more embedding model types and specific models.
    4. Choose a text splitting strategy and set chunk size and overlap.
    5. Select a vector store type and search type.
    6. Set the number of top results to retrieve.
    7. Choose the language of your documents.
    8. Optionally, use custom embeddings, optimize vocabulary, or adjust phonetic matching weight.
    9. If you have a custom tokenizer, upload the file.

    The tool will process your query and display results, statistics, and visualizations to help you compare the performance of different models and strategies.
    """

    iface = gr.TabbedInterface(
        [iface, gr.Markdown(tutorial_md)],
        ["Embedding Comparison", "Tutorial"]
    )

    iface.launch(share=share)

if __name__ == "__main__":
    launch_interface()