File size: 21,893 Bytes
ccb8edf e9d5e9c 8ad24b7 2618588 8ad24b7 84cb849 8ad24b7 a5f7e3b 8ad24b7 488e992 a8ae89c 488e992 8ad24b7 b35adb8 8ad24b7 488e992 8ad24b7 ce988dc 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 b35adb8 8ad24b7 187e575 52d5b06 8ad24b7 52d5b06 c09985f 8ad24b7 a8ae89c 8ad24b7 e6d71ec 8ad24b7 e6d71ec b35adb8 8ad24b7 b35adb8 8ad24b7 738ada4 8ad24b7 a717449 0646ad5 027365f 0646ad5 027365f a5f7e3b 0646ad5 8ad24b7 84cb849 9efbb97 8ad24b7 9efbb97 84cb849 1078648 9efbb97 84cb849 8ad24b7 84cb849 1078648 8ad24b7 ce988dc 8ad24b7 1078648 8ad24b7 1078648 8ad24b7 84cb849 8ad24b7 84cb849 1078648 52d5b06 31095a2 7803d2d 1078648 8ad24b7 84cb849 9efbb97 84cb849 1078648 e0a87f8 1078648 9efbb97 84cb849 1078648 9efbb97 1754322 1078648 8ad24b7 fed8ef0 9efbb97 fed8ef0 9efbb97 a8ae89c 8ad24b7 9efbb97 fed8ef0 8ad24b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import CohereEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter, TokenTextSplitter
from typing import List, Dict, Any
import pandas as pd
import numpy as np
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
import jellyfish
from gensim.models import Word2Vec
from gensim.models.fasttext import FastText
from collections import Counter
from tokenizers import Tokenizer, models, trainers
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE
from sklearn.metrics import silhouette_score
from scipy.stats import spearmanr
from functools import lru_cache
# NLTK Resource Download
def download_nltk_resources():
resources = ['punkt', 'stopwords', 'snowball_data']
for resource in resources:
try:
nltk.download(resource, quiet=True)
except Exception as e:
print(f"Failed to download {resource}: {str(e)}")
download_nltk_resources()
FILES_DIR = './files'
# Model Management
class ModelManager:
def __init__(self):
self.models = {
'HuggingFace': {
'e5-base-de': "danielheinz/e5-base-sts-en-de",
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
'gte-large': "gte-large",
'gbert-base': "gbert-base"
},
'OpenAI': {
'text-embedding-ada-002': "text-embedding-ada-002"
},
'Cohere': {
'embed-multilingual-v2.0': "embed-multilingual-v2.0"
}
}
def add_model(self, provider, name, model_path):
if provider not in self.models:
self.models[provider] = {}
self.models[provider][name] = model_path
def remove_model(self, provider, name):
if provider in self.models and name in self.models[provider]:
del self.models[provider][name]
def get_model(self, provider, name):
return self.models.get(provider, {}).get(name)
def list_models(self):
return {provider: list(models.keys()) for provider, models in self.models.items()}
model_manager = ModelManager()
# File Handling
class FileHandler:
@staticmethod
def extract_text(file_path):
ext = os.path.splitext(file_path)[-1].lower()
if ext == '.pdf':
return FileHandler._extract_from_pdf(file_path)
elif ext == '.docx':
return FileHandler._extract_from_docx(file_path)
elif ext == '.txt':
return FileHandler._extract_from_txt(file_path)
else:
raise ValueError(f"Unsupported file type: {ext}")
@staticmethod
def _extract_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
return ' '.join([page.extract_text() for page in pdf.pages])
@staticmethod
def _extract_from_docx(file_path):
doc = docx.Document(file_path)
return ' '.join([para.text for para in doc.paragraphs])
@staticmethod
def _extract_from_txt(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
# Text Processing
def simple_tokenize(text):
return text.split()
def preprocess_text(text, lang='german'):
text = text.lower()
text = re.sub(r'[^a-zA-Z\s]', '', text)
try:
tokens = word_tokenize(text, language=lang)
except LookupError:
print(f"Warning: NLTK punkt tokenizer for {lang} not found. Using simple tokenization.")
tokens = simple_tokenize(text)
try:
stop_words = set(stopwords.words(lang))
except LookupError:
print(f"Warning: Stopwords for {lang} not found. Skipping stopword removal.")
stop_words = set()
tokens = [token for token in tokens if token not in stop_words]
try:
stemmer = SnowballStemmer(lang)
tokens = [stemmer.stem(token) for token in tokens]
except ValueError:
print(f"Warning: SnowballStemmer for {lang} not available. Skipping stemming.")
return ' '.join(tokens)
def phonetic_match(text, query, method='levenshtein_distance'):
if method == 'levenshtein_distance':
text_phonetic = jellyfish.soundex(text)
#query_phonetic = jellyfish.cologne_phonetic(query)
query_phonetic = jellyfish.soundex(query)
return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
return 0
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
# Tokenize the texts
tokenized_texts = [text.split() for text in texts]
if model_type == 'word2vec':
model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
elif model_type == 'fasttext':
model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
else:
raise ValueError("Unsupported model type")
return model
class CustomEmbeddings(HuggingFaceEmbeddings):
def __init__(self, model_path):
self.model = Word2Vec.load(model_path) # or FastText.load() for FastText models
def embed_documents(self, texts):
return [self.model.wv[text.split()] for text in texts]
def embed_query(self, text):
return self.model.wv[text.split()]
# Custom Tokenizer
def create_custom_tokenizer(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train_from_iterator([text], trainer)
return tokenizer
def custom_tokenize(text, tokenizer):
return tokenizer.encode(text).tokens
# Embedding and Vector Store
@lru_cache(maxsize=None)
def get_embedding_model(model_type, model_name):
model_path = model_manager.get_model(model_type, model_name)
if model_type == 'HuggingFace':
return HuggingFaceEmbeddings(model_name=model_path)
elif model_type == 'OpenAI':
return OpenAIEmbeddings(model=model_path)
elif model_type == 'Cohere':
return CohereEmbeddings(model=model_path)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
if split_strategy == 'token':
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
elif split_strategy == 'recursive':
return RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=overlap_size,
separators=custom_separators or ["\n\n", "\n", " ", ""]
)
else:
raise ValueError(f"Unsupported split strategy: {split_strategy}")
def get_vector_store(vector_store_type, chunks, embedding_model):
# Convert chunks to a tuple to make it hashable
chunks_tuple = tuple(chunks)
# Use a helper function for the actual vector store creation
return _create_vector_store(vector_store_type, chunks_tuple, embedding_model)
def _create_vector_store(vector_store_type, chunks_tuple, embedding_model):
# Convert the tuple back to a list for use with the vector store
chunks = list(chunks_tuple)
if vector_store_type == 'FAISS':
return FAISS.from_texts(chunks, embedding_model)
elif vector_store_type == 'Chroma':
return Chroma.from_texts(chunks, embedding_model)
else:
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
def get_retriever(vector_store, search_type, search_kwargs):
if search_type == 'similarity':
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
elif search_type == 'mmr':
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
elif search_type == 'custom':
# Implement custom retriever logic here
pass
else:
raise ValueError(f"Unsupported search type: {search_type}")
# Main Processing Functions
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None):
if file_path:
text = FileHandler.extract_text(file_path)
else:
text = ""
for file in os.listdir(FILES_DIR):
file_path = os.path.join(FILES_DIR, file)
text += FileHandler.extract_text(file_path)
if custom_tokenizer_file:
tokenizer = create_custom_tokenizer(custom_tokenizer_file)
text = ' '.join(custom_tokenize(text, tokenizer))
else:
text = preprocess_text(text, lang)
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
chunks = text_splitter.split_text(text)
embedding_model = get_embedding_model(model_type, model_name)
return chunks, embedding_model, len(text.split())
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
preprocessed_query = preprocess_text(query, lang)
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
retriever = get_retriever(vector_store, search_type, {"k": top_k})
start_time = time.time()
results = retriever.invoke(preprocessed_query)
def score_result(doc):
similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1]
phonetic_score = phonetic_match(doc.page_content, query)
return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score
results = sorted(results, key=score_result, reverse=True)
end_time = time.time()
# Check if embeddings are available
embeddings = []
for doc in results:
if hasattr(doc, 'embedding'):
embeddings.append(doc.embedding) # Use the embedding if it exists
else:
embeddings.append(None) # Append None if embedding doesn't exist
# Create a DataFrame with the results and embeddings
results_df = pd.DataFrame({
'content': [doc.page_content for doc in results],
'embedding': embeddings
})
return results_df, end_time - start_time, vector_store, results
# Evaluation Metrics
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k):
stats = {
"num_results": len(results),
# "avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0,
"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0,
#"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if not results.empty else 0,
"search_time": search_time,
"vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
"num_documents": len(vector_store.docstore._dict),
"num_tokens": num_tokens,
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A",
"embedding_dimension": len(embedding_model.embed_query(query)),
"top_k": top_k,
}
if len(results) > 1000:
embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
pairwise_similarities = np.inner(embeddings, embeddings)
stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)])
# Silhouette Score
if len(embeddings) > 2:
print('-----')
#stats["silhouette_score"] = "N/A"
stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings)))
else:
stats["silhouette_score"] = "N/A"
else:
stats["result_diversity"] = "N/A"
stats["silhouette_score"] = "N/A"
query_embedding = embedding_model.embed_query(query)
result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
similarities = [np.inner(query_embedding, emb) for emb in result_embeddings]
rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
stats["rank_correlation"] = rank_correlation
return stats
# Visualization
def visualize_results(results_df, stats_df):
fig, axs = plt.subplots(2, 2, figsize=(20, 20))
sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0])
axs[0, 0].set_title('Search Time by Model')
axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')
sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1])
axs[0, 1].set_title('Result Diversity vs. Rank Correlation')
sns.boxplot(x='model', y='avg_content_length', data=stats_df, ax=axs[1, 0])
axs[1, 0].set_title('Distribution of Result Content Lengths')
axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right')
embeddings = np.array([embedding for embedding in results_df['embedding'] if isinstance(embedding, np.ndarray)])
if len(embeddings) > 1:
tsne = TSNE(n_components=2, random_state=42)
embeddings_2d = tsne.fit_transform(embeddings)
sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'][:len(embeddings)], ax=axs[1, 1])
axs[1, 1].set_title('t-SNE Visualization of Result Embeddings')
else:
axs[1, 1].text(0.5, 0.5, "Not enough data for t-SNE visualization", ha='center', va='center')
plt.tight_layout()
return fig
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))
# Count word frequencies
word_freq = Counter(word for text in texts for word in text.split())
# Remove rare words
optimized_texts = [
' '.join(word for word in text.split() if word_freq[word] >= min_frequency)
for text in texts
]
# Train BPE tokenizer
# tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train_from_iterator(optimized_texts, trainer)
return tokenizer, optimized_texts
# Main Comparison Function
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3, custom_tokenizer_file=None):
all_results = []
all_stats = []
settings = {
"split_strategy": split_strategy,
"chunk_size": chunk_size,
"overlap_size": overlap_size,
"custom_separators": custom_separators,
"vector_store_type": vector_store_type,
"search_type": search_type,
"top_k": top_k,
"lang": lang,
"use_custom_embedding": use_custom_embedding,
"optimize_vocab": optimize_vocab,
"phonetic_weight": phonetic_weight
}
for model_type, model_name in zip(model_types, model_names):
# Process the file and generate chunks & embeddings
chunks, embedding_model, num_tokens = process_files(
file.name if file else None,
model_type,
model_name,
split_strategy,
chunk_size,
overlap_size,
custom_separators.split(',') if custom_separators else None,
lang,
custom_tokenizer_file
)
# Custom embedding handling
if use_custom_embedding:
custom_model = create_custom_embedding(chunks) #add custom model by name, must com from gradio FE
embedding_model = CustomEmbeddings(custom_model)
# Optimizing vocabulary if required
if optimize_vocab:
tokenizer, optimized_chunks = optimize_vocabulary(chunks)
chunks = optimized_chunks
# Searching embeddings
results, search_time, vector_store, results_raw = search_embeddings(
chunks,
embedding_model,
vector_store_type,
search_type,
query,
top_k,
lang,
phonetic_weight
)
# Storing embeddings into the results for future use
for doc in results_raw:
print(doc) # or print(dir(doc)) to see available attributes
#embedding = doc.metadata.get('embedding', None) # Use .get() to avoid KeyError
result_embeddings = [doc.metadata.get('embedding', None) for doc in results_raw] # Adjust this based on the actual attribute names
# result_embeddings = [doc['embedding'] for doc in results_raw] # Assuming each result has an embedding
stats = calculate_statistics(results_raw, search_time, vector_store, num_tokens, embedding_model, query, top_k)
stats["model"] = f"{model_type} - {model_name}"
stats.update(settings)
# Formatting results and attaching embeddings
formatted_results = format_results(results_raw, stats)
for i, result in enumerate(formatted_results):
result['embedding'] = result_embeddings[i] # Add the embedding to each result
all_results.extend(formatted_results)
all_stats.append(stats)
# Create DataFrames with embeddings now included
results_df = pd.DataFrame(all_results)
stats_df = pd.DataFrame(all_stats)
# Visualization of the results
fig = visualize_results(results_df, stats_df)
return results_df, stats_df, fig
def format_results(results, stats):
formatted_results = []
for doc in results:
result = {
"Model": stats["model"],
"Content": doc.page_content,
"Embedding": doc.embedding if hasattr(doc, 'embedding') else None,
**doc.metadata,
**{k: v for k, v in stats.items() if k not in ["model"]}
}
formatted_results.append(result)
return formatted_results
# Gradio Interface
def launch_interface(share=True):
iface = gr.Interface(
fn=compare_embeddings,
inputs=[
gr.File(label="Upload File (Optional)"),
gr.Textbox(label="Search Query"),
gr.CheckboxGroup(choices=list(model_manager.list_models().keys()) + ["Custom"], label="Embedding Model Types"),
gr.CheckboxGroup(choices=[model for models in model_manager.list_models().values() for model in models] + ["custom_model"], label="Embedding Models"),
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"),
gr.Slider(1, 10, step=1, value=5, label="Top K"),
gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"),
gr.Checkbox(label="Use Custom Embedding", value=False),
gr.Checkbox(label="Optimize Vocabulary", value=False),
gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight"),
gr.File(label="Custom Tokenizer File (Optional)")
],
outputs=[
gr.Dataframe(label="Results", interactive=False),
gr.Dataframe(label="Statistics", interactive=False),
gr.Plot(label="Visualizations")
],
title="Advanced Embedding Comparison Tool",
description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching"
)
tutorial_md = """
# Advanced Embedding Comparison Tool Tutorial
This tool allows you to compare different embedding models and retrieval strategies for document search and similarity matching.
## How to use:
1. Upload a file (optional) or use the default files in the system.
2. Enter a search query.
3. Select one or more embedding model types and specific models.
4. Choose a text splitting strategy and set chunk size and overlap.
5. Select a vector store type and search type.
6. Set the number of top results to retrieve.
7. Choose the language of your documents.
8. Optionally, use custom embeddings, optimize vocabulary, or adjust phonetic matching weight.
9. If you have a custom tokenizer, upload the file.
The tool will process your query and display results, statistics, and visualizations to help you compare the performance of different models and strategies.
"""
iface = gr.TabbedInterface(
[iface, gr.Markdown(tutorial_md)],
["Embedding Comparison", "Tutorial"]
)
iface.launch(share=share)
if __name__ == "__main__":
launch_interface() |