Chris4K commited on
Commit
b35adb8
1 Parent(s): 7fad639

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -1
app.py CHANGED
@@ -18,7 +18,129 @@ from langchain_text_splitters import (
18
  from typing import List, Dict, Any
19
  import pandas as pd
20
 
21
- # ... (previous code remains the same) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k):
24
  all_results = []
 
18
  from typing import List, Dict, Any
19
  import pandas as pd
20
 
21
+
22
+ nltk.download('punkt', quiet=True)
23
+
24
+ FILES_DIR = './files'
25
+
26
+ MODELS = {
27
+ 'HuggingFace': {
28
+ 'e5-base-de': "danielheinz/e5-base-sts-en-de",
29
+ 'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
30
+ 'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
31
+ 'gte-large': "gte-large",
32
+ 'gbert-base': "gbert-base"
33
+ },
34
+ 'OpenAI': {
35
+ 'text-embedding-ada-002': "text-embedding-ada-002"
36
+ },
37
+ 'Cohere': {
38
+ 'embed-multilingual-v2.0': "embed-multilingual-v2.0"
39
+ }
40
+ }
41
+
42
+ class FileHandler:
43
+ @staticmethod
44
+ def extract_text(file_path):
45
+ ext = os.path.splitext(file_path)[-1].lower()
46
+ if ext == '.pdf':
47
+ return FileHandler._extract_from_pdf(file_path)
48
+ elif ext == '.docx':
49
+ return FileHandler._extract_from_docx(file_path)
50
+ elif ext == '.txt':
51
+ return FileHandler._extract_from_txt(file_path)
52
+ else:
53
+ raise ValueError(f"Unsupported file type: {ext}")
54
+
55
+ @staticmethod
56
+ def _extract_from_pdf(file_path):
57
+ with pdfplumber.open(file_path) as pdf:
58
+ return ' '.join([page.extract_text() for page in pdf.pages])
59
+
60
+ @staticmethod
61
+ def _extract_from_docx(file_path):
62
+ doc = docx.Document(file_path)
63
+ return ' '.join([para.text for para in doc.paragraphs])
64
+
65
+ @staticmethod
66
+ def _extract_from_txt(file_path):
67
+ with open(file_path, 'r', encoding='utf-8') as f:
68
+ return f.read()
69
+
70
+ def get_embedding_model(model_type, model_name):
71
+ if model_type == 'HuggingFace':
72
+ return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name])
73
+ elif model_type == 'OpenAI':
74
+ return OpenAIEmbeddings(model=MODELS[model_type][model_name])
75
+ elif model_type == 'Cohere':
76
+ return CohereEmbeddings(model=MODELS[model_type][model_name])
77
+ else:
78
+ raise ValueError(f"Unsupported model type: {model_type}")
79
+
80
+ def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
81
+ if split_strategy == 'token':
82
+ return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
83
+ elif split_strategy == 'recursive':
84
+ return RecursiveCharacterTextSplitter(
85
+ chunk_size=chunk_size,
86
+ chunk_overlap=overlap_size,
87
+ separators=custom_separators or ["\n\n", "\n", " ", ""]
88
+ )
89
+ else:
90
+ raise ValueError(f"Unsupported split strategy: {split_strategy}")
91
+
92
+ def get_vector_store(store_type, texts, embedding_model):
93
+ if store_type == 'FAISS':
94
+ return FAISS.from_texts(texts, embedding_model)
95
+ elif store_type == 'Chroma':
96
+ return Chroma.from_texts(texts, embedding_model)
97
+ else:
98
+ raise ValueError(f"Unsupported vector store type: {store_type}")
99
+
100
+ def get_retriever(vector_store, search_type, search_kwargs=None):
101
+ if search_type == 'similarity':
102
+ return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
103
+ elif search_type == 'mmr':
104
+ return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
105
+ else:
106
+ raise ValueError(f"Unsupported search type: {search_type}")
107
+
108
+ def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators):
109
+ if file_path:
110
+ text = FileHandler.extract_text(file_path)
111
+ else:
112
+ text = ""
113
+ for file in os.listdir(FILES_DIR):
114
+ file_path = os.path.join(FILES_DIR, file)
115
+ text += FileHandler.extract_text(file_path)
116
+
117
+ text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
118
+ chunks = text_splitter.split_text(text)
119
+
120
+ embedding_model = get_embedding_model(model_type, model_name)
121
+
122
+ return chunks, embedding_model, len(text.split())
123
+
124
+ def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k):
125
+ vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
126
+ retriever = get_retriever(vector_store, search_type, {"k": top_k})
127
+
128
+ start_time = time.time()
129
+ results = retriever.get_relevant_documents(query)
130
+ end_time = time.time()
131
+
132
+ return results, end_time - start_time, vector_store
133
+
134
+ def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model):
135
+ return {
136
+ "num_results": len(results),
137
+ "avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0,
138
+ "search_time": search_time,
139
+ "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
140
+ "num_documents": len(vector_store.docstore._dict),
141
+ "num_tokens": num_tokens,
142
+ "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A"
143
+ }
144
 
145
  def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k):
146
  all_results = []