Update app.py
Browse files
app.py
CHANGED
@@ -258,15 +258,20 @@ def search_embeddings(chunks, embedding_model, vector_store_type, search_type, q
|
|
258 |
results = sorted(results, key=score_result, reverse=True)
|
259 |
end_time = time.time()
|
260 |
|
261 |
-
#
|
262 |
-
embeddings = [
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
264 |
# Create a DataFrame with the results and embeddings
|
265 |
results_df = pd.DataFrame({
|
266 |
'content': [doc.page_content for doc in results],
|
267 |
'embedding': embeddings
|
268 |
})
|
269 |
-
|
270 |
return results_df, end_time - start_time, vector_store, results
|
271 |
|
272 |
# Evaluation Metrics
|
@@ -393,6 +398,8 @@ def compare_embeddings(file, query, model_types, model_names, split_strategy, ch
|
|
393 |
)
|
394 |
|
395 |
# Storing embeddings into the results for future use
|
|
|
|
|
396 |
result_embeddings = [doc.metadata['embedding'] for doc in results_raw] # Adjust this based on the actual attribute names
|
397 |
# result_embeddings = [doc['embedding'] for doc in results_raw] # Assuming each result has an embedding
|
398 |
|
|
|
258 |
results = sorted(results, key=score_result, reverse=True)
|
259 |
end_time = time.time()
|
260 |
|
261 |
+
# Check if embeddings are available
|
262 |
+
embeddings = []
|
263 |
+
for doc in results:
|
264 |
+
if hasattr(doc, 'embedding'):
|
265 |
+
embeddings.append(doc.embedding) # Use the embedding if it exists
|
266 |
+
else:
|
267 |
+
embeddings.append(None) # Append None if embedding doesn't exist
|
268 |
+
|
269 |
# Create a DataFrame with the results and embeddings
|
270 |
results_df = pd.DataFrame({
|
271 |
'content': [doc.page_content for doc in results],
|
272 |
'embedding': embeddings
|
273 |
})
|
274 |
+
|
275 |
return results_df, end_time - start_time, vector_store, results
|
276 |
|
277 |
# Evaluation Metrics
|
|
|
398 |
)
|
399 |
|
400 |
# Storing embeddings into the results for future use
|
401 |
+
for doc in results_raw:
|
402 |
+
print(doc) # or print(dir(doc)) to see available attributes
|
403 |
result_embeddings = [doc.metadata['embedding'] for doc in results_raw] # Adjust this based on the actual attribute names
|
404 |
# result_embeddings = [doc['embedding'] for doc in results_raw] # Assuming each result has an embedding
|
405 |
|