Update app.py
Browse files
app.py
CHANGED
@@ -4,35 +4,46 @@ import pdfplumber
|
|
4 |
import docx
|
5 |
import nltk
|
6 |
import gradio as gr
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
from
|
13 |
-
from
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
# Ensure nltk sentence tokenizer is downloaded
|
24 |
-
nltk.download('punkt')
|
25 |
|
26 |
FILES_DIR = './files'
|
27 |
|
28 |
# Supported embedding models
|
29 |
MODELS = {
|
30 |
-
'
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
|
38 |
class FileHandler:
|
@@ -63,123 +74,148 @@ class FileHandler:
|
|
63 |
with open(file_path, 'r', encoding='utf-8') as f:
|
64 |
return f.read()
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def process_files(model_name, split_strategy, chunk_size, overlap_size, max_tokens):
|
76 |
-
print('-----mmm--------')
|
77 |
-
print(model_name)
|
78 |
-
print(split_strategy)
|
79 |
-
print(overlap_size)
|
80 |
-
print(chunk_size)
|
81 |
-
print(max_tokens)
|
82 |
-
# File processing
|
83 |
-
text = ""
|
84 |
-
for file in os.listdir(FILES_DIR):
|
85 |
-
file_path = os.path.join(FILES_DIR, file)
|
86 |
-
text += FileHandler.extract_text(file_path)
|
87 |
|
88 |
-
|
89 |
if split_strategy == 'token':
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
-
|
93 |
-
|
94 |
-
chunks = splitter.split_text(text)
|
95 |
-
|
96 |
-
# Embed chunks, not the full text
|
97 |
-
model = EmbeddingModel(MODELS[model_name], max_tokens=max_tokens)
|
98 |
-
embeddings = model.embed(chunks)
|
99 |
-
print(chunks)
|
100 |
-
return embeddings, chunks
|
101 |
-
|
102 |
-
def search_embeddings(query, model_name, top_k):
|
103 |
-
model = HuggingFaceEmbeddings(model_name=MODELS[model_name])
|
104 |
-
#embeddings = model.embed_query(query)
|
105 |
-
embeddings = model.similarity_search(query)
|
106 |
-
print(embeddings[0])
|
107 |
-
#query = "What did the president say about Ketanji Brown Jackson"
|
108 |
-
#docs = db.similarity_search(query)
|
109 |
-
#print(docs[0].page_content)
|
110 |
-
# Perform FAISS or other similarity-based search over embeddings
|
111 |
-
# This part requires you to build and search a FAISS index with embeddings
|
112 |
-
|
113 |
-
return embeddings # You would likely return the top-k results here
|
114 |
-
|
115 |
-
def calculate_statistics(embeddings):
|
116 |
-
# Return time taken, token count, etc.
|
117 |
-
return {"tokens": len(embeddings), "time_taken": time.time()}
|
118 |
-
|
119 |
-
import shutil
|
120 |
-
|
121 |
-
|
122 |
-
import shutil
|
123 |
-
|
124 |
-
def upload_file(file, model_name, split_strategy, overlap_size,chunk_size, max_tokens, query, top_k):
|
125 |
-
# Ensure chunk_size and overlap_size are valid integers and provide defaults if needed
|
126 |
-
|
127 |
-
#try:
|
128 |
-
# if chunk_size is None or chunk_size == "":
|
129 |
-
# chunk_size = 100 # Default value if not provided
|
130 |
-
# else:
|
131 |
-
# chunk_size = int(chunk_size) # Convert to int if valid#
|
132 |
-
|
133 |
-
# if overlap_size is None or overlap_size == "":
|
134 |
-
# overlap_size = 0 # Default value if not provided
|
135 |
-
# else:
|
136 |
-
# overlap_size = int(overlap_size) # Convert to int if valid
|
137 |
-
#except ValueError:
|
138 |
-
# return {"error": "Chunk size and overlap size must be valid integers."}
|
139 |
-
print('-------------')
|
140 |
-
print(file.name)
|
141 |
-
print(model_name)
|
142 |
-
print(split_strategy)
|
143 |
-
print(overlap_size)
|
144 |
-
print(chunk_size)
|
145 |
-
print(max_tokens)
|
146 |
-
print(query)
|
147 |
-
print(top_k)
|
148 |
-
|
149 |
-
# Handle file upload using Gradio file object
|
150 |
-
file_path = file.name # Get the file path from Gradio file object
|
151 |
-
|
152 |
-
# Copy the uploaded file content to a local directory
|
153 |
-
destination_path = os.path.join(FILES_DIR, os.path.basename(file_path))
|
154 |
-
shutil.copyfile(file_path, destination_path) # Use shutil to copy the file
|
155 |
-
|
156 |
-
# Process files and get embeddings
|
157 |
-
embeddings, chunks = process_files(model_name, split_strategy, chunk_size, overlap_size, max_tokens)
|
158 |
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
return
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
# Gradio interface
|
169 |
iface = gr.Interface(
|
170 |
-
fn=
|
171 |
inputs=[
|
172 |
-
gr.File(label="Upload File"),
|
173 |
gr.Textbox(label="Search Query"),
|
174 |
-
gr.
|
175 |
-
gr.
|
176 |
-
gr.
|
177 |
-
gr.Slider(
|
178 |
-
gr.Slider(
|
179 |
-
gr.
|
|
|
|
|
|
|
180 |
],
|
181 |
-
outputs="
|
|
|
|
|
182 |
)
|
183 |
|
184 |
-
iface.launch()
|
185 |
-
|
|
|
4 |
import docx
|
5 |
import nltk
|
6 |
import gradio as gr
|
7 |
+
from langchain.embeddings import (
|
8 |
+
HuggingFaceEmbeddings,
|
9 |
+
OpenAIEmbeddings,
|
10 |
+
CohereEmbeddings,
|
11 |
+
)
|
12 |
+
from langchain.vectorstores import FAISS, Chroma
|
13 |
+
from langchain.text_splitters import (
|
14 |
+
RecursiveCharacterTextSplitter,
|
15 |
+
TokenTextSplitter,
|
16 |
+
)
|
17 |
+
from langchain.retrievers import (
|
18 |
+
VectorStoreRetriever,
|
19 |
+
ContextualCompressionRetriever,
|
20 |
+
)
|
21 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
22 |
+
from langchain.llms import OpenAI
|
23 |
+
from typing import List, Dict, Any
|
24 |
+
import pandas as pd
|
25 |
|
26 |
# Ensure nltk sentence tokenizer is downloaded
|
27 |
+
nltk.download('punkt', quiet=True)
|
28 |
|
29 |
FILES_DIR = './files'
|
30 |
|
31 |
# Supported embedding models
|
32 |
MODELS = {
|
33 |
+
'HuggingFace': {
|
34 |
+
'e5-base': "danielheinz/e5-base-sts-en-de",
|
35 |
+
'multilingual-e5-base': "multilingual-e5-base",
|
36 |
+
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
|
37 |
+
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
|
38 |
+
'gte-large': "gte-large",
|
39 |
+
'gbert-base': "gbert-base"
|
40 |
+
},
|
41 |
+
'OpenAI': {
|
42 |
+
'text-embedding-ada-002': "text-embedding-ada-002"
|
43 |
+
},
|
44 |
+
'Cohere': {
|
45 |
+
'embed-multilingual-v2.0': "embed-multilingual-v2.0"
|
46 |
+
}
|
47 |
}
|
48 |
|
49 |
class FileHandler:
|
|
|
74 |
with open(file_path, 'r', encoding='utf-8') as f:
|
75 |
return f.read()
|
76 |
|
77 |
+
def get_embedding_model(model_type, model_name):
|
78 |
+
if model_type == 'HuggingFace':
|
79 |
+
return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name])
|
80 |
+
elif model_type == 'OpenAI':
|
81 |
+
return OpenAIEmbeddings(model=MODELS[model_type][model_name])
|
82 |
+
elif model_type == 'Cohere':
|
83 |
+
return CohereEmbeddings(model=MODELS[model_type][model_name])
|
84 |
+
else:
|
85 |
+
raise ValueError(f"Unsupported model type: {model_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
|
88 |
if split_strategy == 'token':
|
89 |
+
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
|
90 |
+
elif split_strategy == 'recursive':
|
91 |
+
return RecursiveCharacterTextSplitter(
|
92 |
+
chunk_size=chunk_size,
|
93 |
+
chunk_overlap=overlap_size,
|
94 |
+
separators=custom_separators or ["\n\n", "\n", " ", ""]
|
95 |
+
)
|
96 |
else:
|
97 |
+
raise ValueError(f"Unsupported split strategy: {split_strategy}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
def get_vector_store(store_type, texts, embedding_model):
|
100 |
+
if store_type == 'FAISS':
|
101 |
+
return FAISS.from_texts(texts, embedding_model)
|
102 |
+
elif store_type == 'Chroma':
|
103 |
+
return Chroma.from_texts(texts, embedding_model)
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Unsupported vector store type: {store_type}")
|
106 |
|
107 |
+
def get_retriever(vector_store, search_type, search_kwargs=None):
|
108 |
+
if search_type == 'similarity':
|
109 |
+
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
110 |
+
elif search_type == 'mmr':
|
111 |
+
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
|
112 |
+
else:
|
113 |
+
raise ValueError(f"Unsupported search type: {search_type}")
|
114 |
+
|
115 |
+
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators):
|
116 |
+
# File processing
|
117 |
+
if file_path:
|
118 |
+
text = FileHandler.extract_text(file_path)
|
119 |
+
else:
|
120 |
+
text = ""
|
121 |
+
for file in os.listdir(FILES_DIR):
|
122 |
+
file_path = os.path.join(FILES_DIR, file)
|
123 |
+
text += FileHandler.extract_text(file_path)
|
124 |
+
|
125 |
+
# Split text into chunks
|
126 |
+
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
|
127 |
+
chunks = text_splitter.split_text(text)
|
128 |
+
|
129 |
+
# Get embedding model
|
130 |
+
embedding_model = get_embedding_model(model_type, model_name)
|
131 |
|
132 |
+
return chunks, embedding_model
|
133 |
|
134 |
+
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k):
|
135 |
+
# Create vector store
|
136 |
+
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
137 |
+
|
138 |
+
# Get retriever
|
139 |
+
retriever = get_retriever(vector_store, search_type, {"k": top_k})
|
140 |
+
|
141 |
+
# Perform search
|
142 |
+
start_time = time.time()
|
143 |
+
results = retriever.get_relevant_documents(query)
|
144 |
+
end_time = time.time()
|
145 |
+
|
146 |
+
return results, end_time - start_time
|
147 |
+
|
148 |
+
def calculate_statistics(results, search_time):
|
149 |
+
return {
|
150 |
+
"num_results": len(results),
|
151 |
+
"avg_content_length": sum(len(doc.page_content) for doc in results) / len(results),
|
152 |
+
"search_time": search_time
|
153 |
+
}
|
154 |
+
|
155 |
+
def format_results(results, stats):
|
156 |
+
df = pd.DataFrame([
|
157 |
+
{
|
158 |
+
"Content": doc.page_content,
|
159 |
+
"Source": doc.metadata.get("source", "Unknown"),
|
160 |
+
"Relevance Score": doc.metadata.get("score", "N/A")
|
161 |
+
} for doc in results
|
162 |
+
])
|
163 |
+
|
164 |
+
formatted_stats = pd.DataFrame([stats])
|
165 |
+
|
166 |
+
return gr.DataFrame(df), gr.DataFrame(formatted_stats)
|
167 |
+
|
168 |
+
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k):
|
169 |
+
all_results = []
|
170 |
+
all_stats = []
|
171 |
+
|
172 |
+
for model_type, model_name in zip(model_types, model_names):
|
173 |
+
chunks, embedding_model = process_files(
|
174 |
+
file.name if file else None,
|
175 |
+
model_type,
|
176 |
+
model_name,
|
177 |
+
split_strategy,
|
178 |
+
chunk_size,
|
179 |
+
overlap_size,
|
180 |
+
custom_separators.split(',') if custom_separators else None
|
181 |
+
)
|
182 |
+
|
183 |
+
results, search_time = search_embeddings(
|
184 |
+
chunks,
|
185 |
+
embedding_model,
|
186 |
+
vector_store_type,
|
187 |
+
search_type,
|
188 |
+
query,
|
189 |
+
top_k
|
190 |
+
)
|
191 |
+
|
192 |
+
stats = calculate_statistics(results, search_time)
|
193 |
+
stats["model"] = f"{model_type} - {model_name}"
|
194 |
+
|
195 |
+
all_results.append(results)
|
196 |
+
all_stats.append(stats)
|
197 |
+
|
198 |
+
return [format_results(results, stats) for results, stats in zip(all_results, all_stats)]
|
199 |
|
200 |
# Gradio interface
|
201 |
iface = gr.Interface(
|
202 |
+
fn=compare_embeddings,
|
203 |
inputs=[
|
204 |
+
gr.File(label="Upload File (Optional)"),
|
205 |
gr.Textbox(label="Search Query"),
|
206 |
+
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]),
|
207 |
+
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base"]),
|
208 |
+
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
|
209 |
+
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
|
210 |
+
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
|
211 |
+
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
|
212 |
+
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
|
213 |
+
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"),
|
214 |
+
gr.Slider(1, 10, step=1, value=5, label="Top K")
|
215 |
],
|
216 |
+
outputs=[gr.DataFrame(label="Results"), gr.DataFrame(label="Statistics")] * len(MODELS),
|
217 |
+
title="Embedding Comparison Tool",
|
218 |
+
description="Compare different embedding models and retrieval strategies"
|
219 |
)
|
220 |
|
221 |
+
iface.launch()
|
|