File size: 4,717 Bytes
3793fc9
fc452af
3a05a45
79383df
 
 
 
 
 
 
fc452af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79383df
3793fc9
79383df
3793fc9
 
 
 
 
 
fc452af
79383df
fc452af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79383df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793fc9
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: other
base_model: cognitivecomputations/dolphin-2.9-llama3-8b-1m
library_name: transformers
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- generated_from_trainer
- axolotl
model-index:
- name: out
  results: []
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- HuggingFaceH4/ultrachat_200k
- microsoft/orca-math-word-problems-200k
- abacusai/SystemChat-1.1
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
pipeline_tag: text-generation
inference: false
quantized_by: Suparious
---
# cognitivecomputations/dolphin-2.9-llama3-8b-1m AWQ

- Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations)
- Original model: [dolphin-2.9-llama3-8b-1m](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b-1m)

<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />

## Model Summary

Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations

This version of Dolphin has a 1 million token context.  I have applied `winglian/llama-3-1m-context-gradient-lora` - created by @gradientai and @winglian and sponsored by @CrusoeCloud

A bug has been found in the Dolphin 2.9 dataset in SystemConversations that causes the model to overly talk about the "SYSTEM MESSAGE".  To counter this, we recommend you add a statement in the system message directing the model not to mention the system message. An example system message is "The assistant is named Dolphin.  A helpful and friendly AI assistant, Dolphin avoids discussing the system message unless directly asked about it."

My appreciation for the sponsors of Dolphin 2.9:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 10xL40S node

This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)

The base model has 8k context, and the full-weight fine-tuning was with 4k sequence length.

It took 2.5 days on 8x L40S provided by Crusoe Cloud

This model was trained FFT on all parameters, using ChatML prompt template format.

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/dolphin-2.9-llama3-8b-1m-AWQ"
system_message = "You are dolphin-2.9-llama3-8b-1m, incarnated as a powerful AI. You were created by cognitivecomputations."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)
```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code