Edit model card

ProteinClassificationModelV2

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4631
  • Accuracy: 0.92

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.707 1.0 113 0.3861 0.845
0.3382 2.0 226 0.3137 0.87
0.2635 3.0 339 0.2881 0.885
0.2469 4.0 452 0.3090 0.88
0.1995 5.0 565 0.2577 0.92
0.1869 6.0 678 0.2783 0.91
0.1799 7.0 791 0.2146 0.925
0.1376 8.0 904 0.3013 0.89
0.1079 9.0 1017 0.4004 0.885
0.1207 10.0 1130 0.5334 0.85
0.089 11.0 1243 0.3145 0.93
0.1056 12.0 1356 0.3250 0.9
0.1087 13.0 1469 0.4588 0.89
0.0746 14.0 1582 0.3866 0.895
0.081 15.0 1695 0.3356 0.905
0.0539 16.0 1808 0.5468 0.89
0.0772 17.0 1921 0.4060 0.895
0.0729 18.0 2034 0.5682 0.875
0.0525 19.0 2147 0.4364 0.905
0.0654 20.0 2260 0.3860 0.895
0.0461 21.0 2373 0.5711 0.895
0.0539 22.0 2486 0.6325 0.89
0.0309 23.0 2599 0.5805 0.885
0.0452 24.0 2712 0.4380 0.905
0.0406 25.0 2825 0.4316 0.9
0.0404 26.0 2938 0.4540 0.905
0.0288 27.0 3051 0.5276 0.915
0.0493 28.0 3164 0.6025 0.895
0.0244 29.0 3277 0.6028 0.9
0.025 30.0 3390 0.5895 0.915
0.0277 31.0 3503 0.4587 0.915
0.0284 32.0 3616 0.4466 0.915
0.029 33.0 3729 0.4343 0.905
0.021 34.0 3842 0.4058 0.915
0.012 35.0 3955 0.4433 0.92
0.0299 36.0 4068 0.4442 0.925
0.0206 37.0 4181 0.4736 0.92
0.0253 38.0 4294 0.5221 0.915
0.0147 39.0 4407 0.4488 0.92
0.0261 40.0 4520 0.4631 0.92

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skiba4/ProteinClassificationModelV2

Finetuned
(505)
this model