shisa-v2 Base Model ablation
Using a fork of Lightblue's Shaberi benchmark framework:
Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
---|---|---|---|---|---|
gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 |
shisa-ai/shisa-v1-llama3-70b | 7.17 | 7.16 | 7.45 | 7.98 | 6.09 |
karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
shisa-ai/shisa-v1-llama3-8b^ | 6.29 | 6.62 | 6.41 | 7.05 | 5.07 |
shisa-ai/shisa-swallowmx-13a47b-v1 | 6.17 | 6.48 | 6.07 | 7.11 | 5.03 |
shisa-ai/shisa-v1-llama3-8b | 6.10 | 6.52 | 6.20 | 6.37 | 5.33 |
Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
shisa-ai/shisa-v1-gemma-8b | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 |
augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 |
lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
shisa-ai/shisa-v1-yi1.5-9b | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 |
^ Sampler settings: temperature 0.2, min_p 0.1, frequency_penalty 0.5
See axolotl config
axolotl version: 0.4.0
base_model: tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/basemodel-swallowmx-8x22b
model_config:
output_router_logits: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-swallowmx-13a47b-v1
global_batch_size: 1
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
# https://github.com/huggingface/transformers/issues/22101
# https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py#L141
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
outputs/basemodel-swallowmx-8x22b
This model is a fine-tuned version of tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4443
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 119
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5705 | 0.0022 | 1 | 0.5065 |
0.505 | 0.4993 | 229 | 0.3910 |
0.5258 | 0.9986 | 458 | 0.3654 |
0.2964 | 1.4835 | 687 | 0.3786 |
0.2923 | 1.9828 | 916 | 0.3669 |
0.1462 | 2.4682 | 1145 | 0.4429 |
0.1156 | 2.9676 | 1374 | 0.4443 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for shisa-ai/shisa-v1-swallowmx-13a47b
Base model
tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1