vit-weight-decay-1e-5

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4632
  • Accuracy: 0.8460
  • Precision: 0.8510
  • Recall: 0.8460
  • F1: 0.8480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1733
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7624 1.0 321 0.9686 0.7077 0.6754 0.7077 0.6680
1.1455 2.0 642 0.7167 0.7340 0.7348 0.7340 0.7184
1.0313 3.0 963 0.6458 0.7583 0.7586 0.7583 0.7305
0.9864 4.0 1284 0.5631 0.7774 0.7907 0.7774 0.7821
0.931 5.0 1605 0.5847 0.7850 0.7882 0.7850 0.7784
0.9641 6.0 1926 0.5276 0.7899 0.7935 0.7899 0.7906
0.8935 7.0 2247 0.7242 0.7226 0.7970 0.7226 0.7430
0.7589 8.0 2568 0.6404 0.7445 0.7985 0.7445 0.7604
0.7225 9.0 2889 0.5415 0.7975 0.8100 0.7975 0.7986
0.6964 10.0 3210 0.5357 0.7871 0.8323 0.7871 0.8009
0.6232 11.0 3531 0.5579 0.8003 0.8272 0.8003 0.8084
0.5781 12.0 3852 0.6126 0.7847 0.8315 0.7847 0.7978
0.4713 13.0 4173 0.6180 0.8259 0.8343 0.8259 0.8161
0.4834 14.0 4494 0.5668 0.8096 0.8426 0.8096 0.8181
0.3886 15.0 4815 0.4632 0.8460 0.8510 0.8460 0.8480
0.3654 16.0 5136 0.6023 0.8065 0.8375 0.8065 0.8168
0.2904 17.0 5457 0.5002 0.8537 0.8626 0.8537 0.8558
0.2865 18.0 5778 0.5731 0.8332 0.8583 0.8332 0.8408
0.2122 19.0 6099 0.6130 0.8325 0.8606 0.8325 0.8411
0.2227 20.0 6420 0.6097 0.8485 0.8531 0.8485 0.8494
0.179 21.0 6741 0.5650 0.8693 0.8633 0.8693 0.8639
0.1257 22.0 7062 0.5759 0.8714 0.8712 0.8714 0.8707
0.1265 23.0 7383 0.6089 0.8710 0.8684 0.8710 0.8688
0.1146 24.0 7704 0.6169 0.8769 0.8737 0.8769 0.8744
0.1368 25.0 8025 0.5994 0.8745 0.8743 0.8745 0.8739

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
34
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-weight-decay-1e-5

Finetuned
(539)
this model