vit-weight-decay-1e-4

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5277
  • Accuracy: 0.8263
  • Precision: 0.8467
  • Recall: 0.8263
  • F1: 0.8324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1733
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7856 1.0 321 0.9535 0.6869 0.6412 0.6869 0.6229
1.1412 2.0 642 0.6928 0.7424 0.7440 0.7424 0.7311
1.0297 3.0 963 0.6863 0.7490 0.7362 0.7490 0.7057
0.9571 4.0 1284 0.5587 0.7694 0.7901 0.7694 0.7736
0.9346 5.0 1605 0.5654 0.7940 0.8058 0.7940 0.7919
0.9802 6.0 1926 0.6318 0.7746 0.7928 0.7746 0.7794
0.8352 7.0 2247 0.6611 0.7295 0.8145 0.7295 0.7498
0.7621 8.0 2568 0.5766 0.7666 0.8162 0.7666 0.7781
0.7352 9.0 2889 0.5369 0.7996 0.8269 0.7996 0.8079
0.6919 10.0 3210 0.5500 0.7753 0.8270 0.7753 0.7900
0.6105 11.0 3531 0.5562 0.8062 0.8310 0.8062 0.8129
0.5808 12.0 3852 0.6608 0.7708 0.8278 0.7708 0.7871
0.4534 13.0 4173 0.5684 0.8301 0.8483 0.8301 0.8291
0.4519 14.0 4494 0.5928 0.8121 0.8388 0.8121 0.8201
0.3998 15.0 4815 0.5277 0.8263 0.8467 0.8263 0.8324
0.3307 16.0 5136 0.5944 0.8266 0.8458 0.8266 0.8330
0.2899 17.0 5457 0.5387 0.8526 0.8546 0.8526 0.8524
0.2466 18.0 5778 0.5559 0.8495 0.8541 0.8495 0.8506
0.201 19.0 6099 0.6360 0.8336 0.8671 0.8336 0.8427
0.2163 20.0 6420 0.6009 0.8599 0.8575 0.8599 0.8581
0.1614 21.0 6741 0.5804 0.8689 0.8648 0.8689 0.8630
0.1106 22.0 7062 0.5798 0.8689 0.8661 0.8689 0.8670
0.1243 23.0 7383 0.6228 0.8703 0.8686 0.8703 0.8672
0.1251 24.0 7704 0.5987 0.8727 0.8695 0.8727 0.8698
0.1038 25.0 8025 0.5806 0.8769 0.8756 0.8769 0.8753

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
18
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-weight-decay-1e-4

Finetuned
(539)
this model