vit-weight-decay-1e-3

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5183
  • Accuracy: 0.8381
  • Precision: 0.8396
  • Recall: 0.8381
  • F1: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1733
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7663 1.0 321 0.9397 0.6900 0.6694 0.6900 0.6516
1.173 2.0 642 0.6933 0.7257 0.7710 0.7257 0.7360
1.035 3.0 963 0.6482 0.7611 0.7475 0.7611 0.7234
0.9945 4.0 1284 0.6027 0.7625 0.7872 0.7625 0.7661
0.9338 5.0 1605 0.6132 0.7580 0.7989 0.7580 0.7709
0.983 6.0 1926 0.6297 0.7483 0.7977 0.7483 0.7652
0.8867 7.0 2247 0.7642 0.7021 0.7986 0.7021 0.7286
0.8273 8.0 2568 0.6594 0.7386 0.8000 0.7386 0.7546
0.7984 9.0 2889 0.5539 0.7989 0.8082 0.7989 0.7986
0.7191 10.0 3210 0.5732 0.7715 0.8286 0.7715 0.7848
0.6859 11.0 3531 0.5409 0.8131 0.8382 0.8131 0.8164
0.5944 12.0 3852 0.6452 0.7968 0.8273 0.7968 0.8065
0.5064 13.0 4173 0.5183 0.8381 0.8396 0.8381 0.8356
0.4759 14.0 4494 0.6007 0.8145 0.8394 0.8145 0.8216
0.4203 15.0 4815 0.5580 0.8200 0.8412 0.8200 0.8263
0.3931 16.0 5136 0.6186 0.8027 0.8415 0.8027 0.8145
0.3076 17.0 5457 0.5484 0.8336 0.8531 0.8336 0.8395
0.2729 18.0 5778 0.5892 0.8419 0.8495 0.8419 0.8447
0.2265 19.0 6099 0.6573 0.8325 0.8543 0.8325 0.8386
0.2685 20.0 6420 0.6374 0.8488 0.8577 0.8488 0.8517
0.1935 21.0 6741 0.6543 0.8568 0.8559 0.8568 0.8507
0.1486 22.0 7062 0.6030 0.8665 0.8671 0.8665 0.8657
0.1628 23.0 7383 0.6315 0.8717 0.8717 0.8717 0.8676

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
20
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-weight-decay-1e-3

Finetuned
(539)
this model