Edit model card

vit-lr-step

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5312
  • Accuracy: 0.8245
  • Precision: 0.8216
  • Recall: 0.8245
  • F1: 0.8048

Training procedure

Early stopping is employed with a patience of 10 and validation loss as the stopping criteria.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: StepLR(optimizer, step_size = 1600, gamma = 0.5, last_epoch=-1)
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6607 1.0 321 0.5487 0.8141 0.8096 0.8141 0.8033
0.4016 2.0 642 0.5312 0.8245 0.8216 0.8245 0.8048
0.2341 3.0 963 0.6710 0.8173 0.8126 0.8173 0.8001
0.1273 4.0 1284 0.6510 0.8419 0.8486 0.8419 0.8434
0.0855 5.0 1605 0.8303 0.8339 0.8345 0.8339 0.8251
0.0129 6.0 1926 0.7846 0.8516 0.8568 0.8516 0.8530
0.0008 7.0 2247 0.8298 0.8637 0.8623 0.8637 0.8604
0.0001 8.0 2568 0.8349 0.8644 0.8621 0.8644 0.8613
0.0001 9.0 2889 0.8528 0.8641 0.8617 0.8641 0.8610
0.0001 10.0 3210 0.8711 0.8634 0.8609 0.8634 0.8603
0.0001 11.0 3531 0.8797 0.8634 0.8609 0.8634 0.8603
0.0 12.0 3852 0.8891 0.8634 0.8609 0.8634 0.8603

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-lr-step

Finetuned
(497)
this model