Edit model card

vit-lr-exponential

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1693
  • Accuracy: 0.6689
  • Precision: 0.5100
  • Recall: 0.6689
  • F1: 0.5368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1467 1.0 321 1.1693 0.6689 0.5100 0.6689 0.5368
1.1338 2.0 642 1.1693 0.6689 0.5100 0.6689 0.5368
1.1328 3.0 963 1.1693 0.6689 0.5100 0.6689 0.5368
1.1331 4.0 1284 1.1693 0.6689 0.5100 0.6689 0.5368
1.1325 5.0 1605 1.1693 0.6689 0.5100 0.6689 0.5368
1.1333 6.0 1926 1.1693 0.6689 0.5100 0.6689 0.5368
1.1332 7.0 2247 1.1693 0.6689 0.5100 0.6689 0.5368
1.1327 8.0 2568 1.1693 0.6689 0.5100 0.6689 0.5368
1.1341 9.0 2889 1.1693 0.6689 0.5100 0.6689 0.5368
1.1328 10.0 3210 1.1693 0.6689 0.5100 0.6689 0.5368
1.1328 11.0 3531 1.1693 0.6689 0.5100 0.6689 0.5368

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-lr-exponential

Finetuned
(497)
this model