Edit model card

vit-lr-cosine-warmup

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4736
  • Accuracy: 0.8395
  • Precision: 0.8318
  • Recall: 0.8395
  • F1: 0.8308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 770
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.86 1.0 321 0.5250 0.8141 0.8100 0.8141 0.8011
0.4517 2.0 642 0.5117 0.8221 0.8347 0.8221 0.8100
0.3512 3.0 963 0.4736 0.8395 0.8318 0.8395 0.8308
0.2184 4.0 1284 0.4797 0.8568 0.8536 0.8568 0.8505
0.1264 5.0 1605 0.6212 0.8547 0.8552 0.8547 0.8530
0.0687 6.0 1926 0.7659 0.8464 0.8476 0.8464 0.8402
0.0463 7.0 2247 0.8237 0.8519 0.8546 0.8519 0.8469
0.0373 8.0 2568 0.8712 0.8377 0.8493 0.8377 0.8415
0.0347 9.0 2889 0.8181 0.8568 0.8550 0.8568 0.8534
0.0263 10.0 3210 1.0705 0.8447 0.8389 0.8447 0.8308
0.0289 11.0 3531 0.9376 0.8589 0.8606 0.8589 0.8550
0.0164 12.0 3852 0.9714 0.8634 0.8611 0.8634 0.8611
0.0077 13.0 4173 1.2992 0.8398 0.8396 0.8398 0.8243

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-lr-cosine-warmup

Finetuned
(497)
this model