Edit model card

vit-dropout-0.2

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4888
  • Accuracy: 0.8318
  • Precision: 0.8450
  • Recall: 0.8318
  • F1: 0.8340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1219
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6129 1.0 321 0.8251 0.7223 0.7708 0.7223 0.7354
0.9753 2.0 642 0.7419 0.7115 0.7830 0.7115 0.7320
0.9289 3.0 963 0.5421 0.7968 0.7942 0.7968 0.7901
0.8978 4.0 1284 0.6563 0.7410 0.8112 0.7410 0.7569
0.8271 5.0 1605 0.5586 0.8058 0.8090 0.8058 0.8050
0.7757 6.0 1926 0.5340 0.8065 0.8220 0.8065 0.8113
0.6981 7.0 2247 0.5943 0.7791 0.8207 0.7791 0.7911
0.5954 8.0 2568 0.5836 0.7660 0.8270 0.7660 0.7824
0.5804 9.0 2889 0.4888 0.8318 0.8450 0.8318 0.8340
0.4894 10.0 3210 0.5404 0.8037 0.8459 0.8037 0.8145
0.4924 11.0 3531 0.4997 0.8166 0.8530 0.8166 0.8257
0.38 12.0 3852 0.5669 0.8356 0.8487 0.8356 0.8404
0.3109 13.0 4173 0.5983 0.8467 0.8492 0.8467 0.8415
0.3445 14.0 4494 0.5060 0.8620 0.8643 0.8620 0.8622
0.2457 15.0 4815 0.5823 0.8547 0.8564 0.8547 0.8520
0.2297 16.0 5136 0.5347 0.8620 0.8647 0.8620 0.8628
0.1701 17.0 5457 0.5561 0.8689 0.8665 0.8689 0.8656
0.186 18.0 5778 0.5319 0.8686 0.8688 0.8686 0.8679
0.1258 19.0 6099 0.6001 0.8655 0.8655 0.8655 0.8643

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-dropout-0.2

Finetuned
(497)
this model