vit-class-weight

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4472
  • Accuracy: 0.8478
  • Precision: 0.8582
  • Recall: 0.8478
  • F1: 0.8483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1219
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5485 1.0 321 0.8743 0.6813 0.7810 0.6813 0.7087
0.9628 2.0 642 0.7893 0.6907 0.7945 0.6907 0.7178
0.8902 3.0 963 0.5577 0.7926 0.7956 0.7926 0.7835
0.8477 4.0 1284 0.5734 0.7611 0.8190 0.7611 0.7770
0.7773 5.0 1605 0.6590 0.7431 0.8052 0.7431 0.7590
0.6953 6.0 1926 0.5321 0.8100 0.8298 0.8100 0.8167
0.6122 7.0 2247 0.5331 0.8044 0.8280 0.8044 0.8093
0.5548 8.0 2568 0.6589 0.7649 0.8313 0.7649 0.7832
0.512 9.0 2889 0.4548 0.8395 0.8445 0.8395 0.8402
0.449 10.0 3210 0.4472 0.8478 0.8582 0.8478 0.8483
0.4012 11.0 3531 0.5304 0.8287 0.8509 0.8287 0.8353
0.3584 12.0 3852 0.5620 0.8454 0.8576 0.8454 0.8468
0.2829 13.0 4173 0.6837 0.8436 0.8490 0.8436 0.8359
0.2761 14.0 4494 0.6061 0.8509 0.8643 0.8509 0.8541
0.2192 15.0 4815 0.5223 0.8637 0.8662 0.8637 0.8639
0.1755 16.0 5136 0.5640 0.8558 0.8684 0.8558 0.8591
0.1568 17.0 5457 0.5585 0.8682 0.8736 0.8682 0.8695
0.1674 18.0 5778 0.5645 0.8724 0.8735 0.8724 0.8707
0.1022 19.0 6099 0.5931 0.8745 0.8740 0.8745 0.8737
0.1487 20.0 6420 0.6107 0.8717 0.8736 0.8717 0.8722

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharren/vit-class-weight

Finetuned
(539)
this model