Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# Upload the final model to Huggingface
hub_model_id: shalini03/tinyllama-1.1B_alpaca_2k_lora

# Store the training logs in weights and biases
#wandb_entity: shalini_03
#wandb_project: ft_tinyllama-1.1B_alpaca_2k_lora

# The rest of this config stays the same:
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

tinyllama-1.1B_alpaca_2k_lora

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.4615 0.0816 1 1.4899
1.3851 0.2449 3 1.4869
1.3658 0.4898 6 1.4376
1.2683 0.7347 9 1.3399
1.2259 0.9796 12 1.2956
1.2523 1.1633 15 1.2787
1.2271 1.4082 18 1.2527
1.1348 1.6531 21 1.2336
1.2694 1.8980 24 1.2286
1.1484 2.0816 27 1.2224
1.1527 2.3265 30 1.2214
1.1937 2.5714 33 1.2187
1.1121 2.8163 36 1.2150
1.1517 3.0612 39 1.2147
1.1888 3.2449 42 1.2107
1.1002 3.4898 45 1.2122
1.1884 3.7347 48 1.2111

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for shalini03/tinyllama-1.1B_alpaca_2k_lora