Yi-34Bx2-MoE-60B-GGUF
Original Model
Run with LlamaEdge
LlamaEdge version: v0.2.8 and above
Prompt template
Prompt type:
chatml
Prompt string
<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant
Reverse prompt:
<|im_end|>
Context size:
7168
Run as LlamaEdge service
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Yi-34Bx2-MoE-60B-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template chatml \ --reverse-prompt '<|im_end|>' \ --ctx-size 7168 \ --model-name Yi-34Bx2-MoE-60B
Run as LlamaEdge command app
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Yi-34Bx2-MoE-60B-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template chatml \ --reverse-prompt '<|im_end|>' \ --ctx-size 7168
Quantized GGUF Models
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
Yi-34Bx2-MoE-60B-Q2_K.gguf | Q2_K | 2 | 22.4 GB | smallest, significant quality loss - not recommended for most purposes |
Yi-34Bx2-MoE-60B-Q3_K_L.gguf | Q3_K_L | 3 | 31.8 GB | small, substantial quality loss |
Yi-34Bx2-MoE-60B-Q3_K_M.gguf | Q3_K_M | 3 | 29.2 GB | very small, high quality loss |
Yi-34Bx2-MoE-60B-Q3_K_S.gguf | Q3_K_S | 3 | 26.3 GB | very small, high quality loss |
Yi-34Bx2-MoE-60B-Q4_0.gguf | Q4_0 | 4 | 34.3 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Yi-34Bx2-MoE-60B-Q4_K_M.gguf | Q4_K_M | 4 | 36.7 GB | medium, balanced quality - recommended |
Yi-34Bx2-MoE-60B-Q4_K_S.gguf | Q4_K_S | 4 | 34.6 GB | small, greater quality loss |
Yi-34Bx2-MoE-60B-Q5_0.gguf | Q5_0 | 5 | 41.9 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Yi-34Bx2-MoE-60B-Q5_K_M.gguf | Q5_K_M | 5 | 43.1 GB | large, very low quality loss - recommended |
Yi-34Bx2-MoE-60B-Q5_K_S.gguf | Q5_K_S | 5 | 41.9 GB | large, low quality loss - recommended |
Yi-34Bx2-MoE-60B-Q6_K.gguf | Q6_K | 6 | 49.9 GB | very large, extremely low quality loss |
Yi-34Bx2-MoE-60B-Q8_0-00001-of-00003.gguf | Q8_0 | 8 | 32.2 GB | very large, extremely low quality loss - not recommended |
Yi-34Bx2-MoE-60B-Q8_0-00002-of-00003.gguf | Q8_0 | 8 | 32.1 GB | very large, extremely low quality loss - not recommended |
Yi-34Bx2-MoE-60B-Q8_0-00001-of-00003.gguf | Q8_0 | 8 | 312 MB | very large, extremely low quality loss - not recommended |
Yi-34Bx2-MoE-60B-f16-00001-of-00008.gguf | f16 | 16 | 31.9 GB | |
Yi-34Bx2-MoE-60B-f16-00002-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00003-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00004-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00005-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00006-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00007-of-00008.gguf | f16 | 16 | 31.7 GB | |
Yi-34Bx2-MoE-60B-f16-00008-of-00008.gguf | f16 | 16 | 21.1 GB |
Quantized with llama.cpp b2734
- Downloads last month
- 158
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for second-state/Yi-34Bx2-MoE-60B-GGUF
Base model
cloudyu/Yi-34Bx2-MoE-60B