6-classifier-finetuned-padchest

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6407
  • F1: 0.7990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1
2.0829 1.0 18 2.0240 0.1072
1.9599 2.0 36 1.8375 0.3757
1.725 3.0 54 1.5851 0.4462
1.5014 4.0 72 1.3785 0.4928
1.3135 5.0 90 1.2678 0.5368
1.2446 6.0 108 1.1646 0.6053
1.1576 7.0 126 1.1553 0.5554
1.0868 8.0 144 1.0353 0.6231
1.0121 9.0 162 1.0081 0.6435
0.988 10.0 180 0.9306 0.6951
0.9663 11.0 198 0.9062 0.7062
0.8709 12.0 216 0.8939 0.6950
0.8891 13.0 234 0.8283 0.7371
0.843 14.0 252 0.7945 0.7482
0.8339 15.0 270 0.8384 0.7236
0.8029 16.0 288 0.8167 0.7426
0.777 17.0 306 0.7842 0.7659
0.7592 18.0 324 0.8064 0.7427
0.7052 19.0 342 0.7804 0.7553
0.7556 20.0 360 0.7332 0.7851
0.688 21.0 378 0.7643 0.7676
0.7216 22.0 396 0.7391 0.7623
0.6434 23.0 414 0.6996 0.7869
0.6673 24.0 432 0.7297 0.7775
0.6474 25.0 450 0.7006 0.7807
0.6352 26.0 468 0.7134 0.7778
0.6068 27.0 486 0.7377 0.7776
0.5942 28.0 504 0.6723 0.8089
0.5945 29.0 522 0.6686 0.7941
0.603 30.0 540 0.6667 0.7809
0.5974 31.0 558 0.6698 0.7946
0.5743 32.0 576 0.6531 0.8090
0.5663 33.0 594 0.6756 0.8013
0.5583 34.0 612 0.6535 0.8025
0.5199 35.0 630 0.6542 0.7936
0.5851 36.0 648 0.6595 0.7956
0.5105 37.0 666 0.6784 0.7886
0.4947 38.0 684 0.6625 0.8002
0.5197 39.0 702 0.6637 0.7975
0.514 40.0 720 0.6527 0.7925
0.4949 41.0 738 0.6482 0.7992
0.5047 42.0 756 0.6427 0.8036
0.5058 43.0 774 0.6437 0.8052
0.4645 44.0 792 0.6324 0.8062
0.4411 45.0 810 0.6481 0.8052
0.4602 46.0 828 0.6460 0.8037
0.4265 47.0 846 0.6505 0.8036
0.4945 48.0 864 0.6467 0.7991
0.4794 49.0 882 0.6388 0.8084
0.442 50.0 900 0.6407 0.7990

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results