Refactored the README

#7
by samadpls - opened
Files changed (1) hide show
  1. README.md +63 -1
README.md CHANGED
@@ -12,4 +12,66 @@ tags:
12
  language:
13
  - en
14
  pipeline_tag: text2text-generation
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  language:
13
  - en
14
  pipeline_tag: text2text-generation
15
+ ---
16
+
17
+ # 🛢💬 Querypls-Prompt2SQL
18
+
19
+ ## Overview
20
+
21
+ Querypls-Prompt2SQL is a 💬 text-to-SQL generation model developed by [samadpls](https://github.com/samadpls). It is designed for generating SQL queries based on user prompts.
22
+
23
+ ## Model Details
24
+
25
+ - **License:** Apache-2.0
26
+ - **Datasets:**
27
+ - [samadpls/querypls-prompt2sql-dataset](https://huggingface.co/datasets/samadpls/querypls-prompt2sql-dataset)
28
+ - [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
29
+ - **Tags:**
30
+ - stabilityai/StableBeluga-7B
31
+ - langchain
32
+ - opensource
33
+ - stabilityai
34
+ - SatbleBeluga-7B
35
+ - **Language(s):** English
36
+ - **Pipeline Tag:** Text2Text Generation
37
+
38
+ ## Model Usage
39
+
40
+ To get started with the model in Python, you can use the following code:
41
+
42
+ ```python
43
+ from transformers import pipeline, AutoTokenizer
44
+
45
+ question = "how to get all employees from table0"
46
+ prompt = f'Your task is to create SQL query of the following {question}, just SQL query and no text'
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("samadpls/querypls-prompt2sql")
49
+ pipe = pipeline(task='text-generation', model="samadpls/querypls-prompt2sql", tokenizer=tokenizer, max_length=200)
50
+
51
+ result = pipe(prompt)
52
+ print(result[0]['generated_text'])
53
+ ```
54
+
55
+ Adjust the `question` variable with the desired question, and the generated SQL query will be printed.
56
+
57
+ ## Training Details
58
+
59
+ The model was trained on Google Colab, and its purpose is to be used in the [Querypls](https://github.com/samadpls/Querypls) project with the following training and validation loss progression:
60
+
61
+ ```yaml
62
+ Copy code
63
+ Step Training Loss Validation Loss
64
+ 943 2.332100 2.652054
65
+ 1886 2.895300 2.551685
66
+ 2829 2.427800 2.498556
67
+ 3772 2.019600 2.472013
68
+ 4715 3.391200 2.465390
69
+ ```
70
+ `However, note that the model may be too large to load in certain environments.`
71
+
72
+ For more information and details, please refer to the provided [documentation](https://huggingface.co/stabilityai/StableBeluga-7B).
73
+
74
+
75
+ ## Model Card Authors
76
+
77
+ - 🤖 [samadpls](https://github.com/samadpls)