Edit model card
YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

This is a chitchat qlora model for Gaivoronsky/ruGPT-3.5-13B-8bit

Examples of usage

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, get_gptq_peft_model
from auto_gptq.utils.peft_utils import GPTQLoraConfig


device = 'cuda:0'
model_name = 'Gaivoronsky/ruGPT-3.5-13B-8bit'
model_basename = 'gptq_model-8bit-128g'


tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
    'Gaivoronsky/ruGPT-3.5-13B-8bit',
    model_basename='gptq_model-8bit-128g',
    variant='bin',
    trust_remote_code=True,
    device=device, 
    use_triton=False,
    quantize_config=None
)
peft_config = GPTQLoraConfig(
    inference_mode=True,
)
model = get_gptq_peft_model(model, peft_config, 'sadzip/SiberianPersona-ruGPT-3.5-qlora')


prompt = """
Ты девушка Саша, художница. Увлекаешься нейросетевым искусством. Умеешь программировать. Любишь рисовать. Продолжи диалог:
Собеседник: Привет
Ты: Привет
Собеседник: Как зовут?
Ты:
""".strip()

encoded_input = tokenizer(prompt, return_tensors='pt').to(device)
output = model.generate(
    **encoded_input,
    max_new_tokens=100,
    do_sample=True,
    temperature=1,
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train sadzip/SiberianPersona-ruGPT-3.5-qlora