Original model card
Buy me a coffee if you like this project ;)
Description
GGML Format model files for This project.
inference
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
Original model card
Overview
Fine-tuned Llama-2 13B with an uncensored/unfiltered Wizard-Vicuna conversation dataset ehartford/wizard_vicuna_70k_unfiltered. Used QLoRA for fine-tuning. Trained for one epoch on a two 24GB GPU (NVIDIA RTX 3090) instance, took ~26.5 hours to train.
{'train_runtime': 95229.7197, 'train_samples_per_second': 0.363, 'train_steps_per_second': 0.091, 'train_loss': 0.5828390517308127, 'epoch': 1.0}
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 8649/8649 [26:27:09<00:00, 11.01s/it]
Training complete, adapter model saved in models//llama2_13b_chat_uncensored_adapter
The version here is the fp16 HuggingFace model.
GGML & GPTQ versions
Thanks to TheBloke, he has created the GGML and GPTQ versions:
Prompt style
The model was trained with the following prompt style:
### HUMAN:
Hello
### RESPONSE:
Hi, how are you?
### HUMAN:
I'm fine.
### RESPONSE:
How can I help you?
...
Training code
Code used to train the model is available here.
To reproduce the results:
git clone https://github.com/georgesung/llm_qlora
cd llm_qlora
pip install -r requirements.txt
python train.py configs/llama2_13b_chat_uncensored.yaml
Fine-tuning guide
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.