t5-abs-2209-2133-lr-0.0001-bs-10-maxep-10
This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1096
- Rouge/rouge1: 0.4008
- Rouge/rouge2: 0.1771
- Rouge/rougel: 0.3596
- Rouge/rougelsum: 0.3602
- Bertscore/bertscore-precision: 0.9032
- Bertscore/bertscore-recall: 0.8756
- Bertscore/bertscore-f1: 0.889
- Meteor: 0.3185
- Gen Len: 31.4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.8028 | 0.8 | 2 | 2.1830 | 0.3216 | 0.1347 | 0.2803 | 0.2806 | 0.9067 | 0.8675 | 0.8865 | 0.2452 | 25.4 |
1.7773 | 2.0 | 5 | 2.1405 | 0.3287 | 0.1186 | 0.2839 | 0.2847 | 0.8962 | 0.8697 | 0.8825 | 0.2613 | 31.5 |
2.4733 | 2.8 | 7 | 2.1404 | 0.3409 | 0.1254 | 0.2934 | 0.294 | 0.8977 | 0.8725 | 0.8847 | 0.2714 | 32.7 |
1.6093 | 4.0 | 10 | 2.1299 | 0.4007 | 0.1538 | 0.3276 | 0.3302 | 0.9052 | 0.8761 | 0.8902 | 0.3121 | 33.0 |
2.3586 | 4.8 | 12 | 2.1212 | 0.4092 | 0.1834 | 0.3627 | 0.363 | 0.9067 | 0.8774 | 0.8917 | 0.3327 | 31.8 |
1.4823 | 6.0 | 15 | 2.1129 | 0.396 | 0.1745 | 0.3553 | 0.3567 | 0.9029 | 0.8762 | 0.8892 | 0.3163 | 32.0 |
2.1644 | 6.8 | 17 | 2.1106 | 0.3936 | 0.1731 | 0.3559 | 0.3574 | 0.903 | 0.8753 | 0.8888 | 0.3092 | 31.2 |
1.4411 | 8.0 | 20 | 2.1096 | 0.4008 | 0.1771 | 0.3596 | 0.3602 | 0.9032 | 0.8756 | 0.889 | 0.3185 | 31.4 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for roequitz/t5-abs-2209-2133-lr-0.0001-bs-10-maxep-10
Base model
google-t5/t5-base